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Part I: The Python Language
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Lesson 1. Vocabulary

A module is file that contains python code. On your hard drive, this is saved as myfile.py.

15



Lesson 2. Loading Modules

2.1 Module Path Needs to be Specified

ref

1 import t k i n t e r as tk
2 import sys
3

4 # append the f u l l path o f the f o l d e r
5 sys . path . append ( ' /Users / dona lde l g e r / SpyderPro ject s / Re f l e c t i o n / code ' )
6

7 import r e f l e c t
8

9 i f name == ' main ' :
10 root = tk .Tk( )
11 r1 = r e f l e c t . Re f l e c t ( root )
12 r1 . g r i d ( padx=15, pady=15)
13 root . geometry ( '+20+20 ' )
14 root . mainloop ( )
15

16 \ chapter {Round}
17

18 \ subs e c t i on {Round to a Sp e c i f i e d Number o f D i g i t s }
19

20

21 \begin { l cverbat im }
22 In [ ] : round (129 .4375)
23 Out [ ] : 129
24

25 In [ ] : round (129 .4375 , 2)
26 Out [ ] : 129 .44
27 \end{ l cverbat im }
28

29

30 \ cverb ! round (number [ , n d i g i t s ] ) ! Round to nd i g i t s ( d e f au l t =0) d i g i t s a f t e r the decimal po int . The 0 .5 i s rounded up or down to g ive an even number .
31

32

33

34 \ subs e c t i on {Round Up to Nearest Whole Number}
35

36 The code
37 \begin {codeA}{}{Python}
38 import math
39 va l = math . c e i l ( 2 . 4 )

will set val = 2 . Note that the type of val is float, not integer. The method math.ceil(x)

returns the smallest integer value that is greater than or equal to x.

16
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Lesson 3. Simple Math

3.1 Mean

1 import numpy as np
2 gap = [ 3 . 2 7 , 3 . 148 , 3 . 230 , 3 . 182 , 3 . 257 , 3 . 195 , 3 . 262 , 3 . 244 , 3 . 161 , 3 . 222 ,
3 3 . 24 , 3 . 2 0 7 ]
4 pr in t (np .mean( gap ) )

1 l i s t 1 = [ 2 . 4 , 7 . 6 , 9 . 3 ]
2 mean1 = sum( l i s t 1 ) / f l o a t ( l en ( l i s t 1 ) )

17



Lesson 4. The String

4.1 Slice

This Digital Oceans article explain how to slice a string.

To include the front or back end of a string, omit one of the numbers is the string[n:n]

syntax.

Example. print(mystr[:10]) prints the first 10 characters.

Example: print(mystr[10:]) prints from character 10 to the end.

4.2 Capitalize or Lower Case

1 ms = ' h e l l o '
2

3 ms . t i t l e ( ) # re tu rn s He l lo
4 ms . c a p i t a l i z e ( ) # re tu rn s He l lo
5 ms . upper ( ) # re tu rn s HELLO
6 ms [ : 1 ] . upper ( ) + ms [ 1 : ] # re tu rn s He l lo

4.3 Split a string

Example: Splitting a file name into parts

>>> t = '10t.jpg'

>>> t.split('.')

['10t', 'jpg']

Example: Splitting a sentence into words

>>> t = 'the big dog ran fast'

>>> t.split()

['the', 'big', 'dog', 'ran', 'fast']

18
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4.4 String to List: Split at LineBreaks

tutorialspoint

Ref.

1 s t r . s p l i t l i n e s (True ) # Inc lude \n
2 s t r . s p l i t l i n e s ( ) # Exclude \n

4.5 Search and Replace

Example. If a = '1:2,3' , then a.replace(':', ", ") gives the string '1, 2, 3' .

The syntax is mystr.replace(old, new[, max]) . If max is omitted, all instances of the
string are replaced. If max is present, then up to max instances are replaced.

4.6 Count Occurrences

4.7 String to Numbers

eval(sting)

1 >>> a = ' (1 , 2 , 3) '
2 >>> eva l ( a )
3 (1 , 2 , 3)

4.8 Execute a Statement written as a String

exec(sting)

4.9 Remove Leading and Trailing Characters: Esp. Whitespace

mystring.strip() : remove leading and trailing whitespace

mystring.strip('2') : remove leading and trailing 2s

mystring.lstrip() : remove leading whitespace

mystring.rstrip() : remove trailing whitespace

The website tutorialspoint describes the strip() method.

http://www.tutorialspoint.com/python/string_splitlines.htm
https://stackoverflow.com/questions/24237524/how-to-split-a-python-string-on-new-line-characters
http://www.tutorialspoint.com/python/string_strip.htm
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The website datascience describes the strip(), lstrip(), and the rstrip() methods.

4.10 Check if String is Empty

If you know that your variable is a string, then use
if not string_var: .

If your variable could also be some other type, then use
if myString == "":

http://www.datasciencemadesimple.com/remove-spaces-in-python/


Lesson 5. The String Format Method

5.1 Format Specifier

:xx.xx see table for all the possible x values

Figure 5.1

5.2 Older ...

resource
euro resource

The SFM is way to insert data into a string of characters so that the resulting string
effectively communicates.

5.3 Numbers and Currency

'{:.2f}'.format(3.141592653589793) gives 3.14

To print $1,234.5, use the command '${:,.2f}'.format(1234.5)

1 power = 170935020100
2 pr in t ( ' power i s { : . 4 e} ' . format ( power ) )
3

4 # output : power i s 1 .7094 e+11

5.4 Values and Key=Value Information

The general format is
mystring.format(po, p1, p2, ... , ko = vo, k1 = v1, ....)

where p=parameter and k=v means that keyword=value

21

https://pyformat.info
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5.5 Use a Dictionary

Example:

geopoint = {'latitude':41.123,'longitude':71.091}

print('{latitude} {longitude}'.format(**geopoint))

The structure is:

ddd = {key1:value2, key2: value2, ...}

string.format(**ddd)



Lesson 6. The List

6.1 Remove or Pop item

In: a = [1, 'dog', 2.4]

In: a.remove(1)

In: a

Out: ['dog', 2.4]

In: a.remove('dog')

In: a

Out: [2.4]

The list method pop removes the item at index i from the list while also returning the
item:

1 In [ 1 ] : m l i s t = [ 0 , 1 , 2 , 3 ]
2

3 In [ 2 ] : m l i s t . pop (2 )
4 Out [ 2 ] : 2
5

6 In [ 3 ] : m l i s t
7 Out [ 3 ] : [ 0 , 1 , 3 ]

6.2 Add Item at Start or Before an Index

Use the list insert method.

Example. a.insert(0, 0.42) adds an item at the start of the listl

Example: For the list a = [0, 2.4, -9.3] , the command a.insert(1, 0.42) gives

[0, 0.42, 2.4, -9.3]

6.3 Convert Between Tuples and Lists

a = (1, 2, 3)

b = list(a)

23
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b = [1, 2, 3]

c = tuple(b)

6.4 The List Comprehension

The list comprehension is a method to construct lists without using loops; see this article;
see python for beginers

new_list = [expression(i) for i in old_list if filter(i)]

Example
squares = [x**2 for x in range(10)]

6.5 List: integers to float

1 >>> a = (1 , 2 , 3)
2 >>> [ f l o a t ( i ) f o r i in a ]
3 [ 1 . 0 , 2 . 0 , 3 . 0 ]

http://www.secnetix.de/olli/Python/list_comprehensions.hawk
http://www.pythonforbeginners.com/basics/list-comprehensions-in-python


Lesson 7. The Dictionary

7.1 Definition

A dictionary is a type of data structure that is made up of a collection or set of key and
value pairs.

For example, suppose you were calculating your monthly expenses, you might have some
data like this

Table 7.1: Expense data in units of dollars/month

Key (name of category) Value (amount of category)

utilities 106
rent 632
groceries 282

The dictionary is the type of DS that is best for storing this type of data; shows up all the
time; this is why the dictionary is super useful

7.2 Creating a Dictionary

One way is
dictionary_name = {key:value, key:value, ...}

7.3 Remove an Item

cell_dict.pop('pk')

7.4 Getting a list of the keys

book.dct.keys() Returns a list containing the keys

7.5 Dictionary

The string
"{'seq': 2, 'desc': 'good', 'a': 'dog'}"

25
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was created using

dict = {"a":"dog", "desc":"good", "seq":2}

a = str(dict)

To covert the string a back to a dictionary use the eval() command as follows:

print(eval(a)

7.6 Dictionary from Two Lists

List 1: a = [9, 'dog', 'h']

List 2: b = ['wookie', 22.4 , 'general']

Command: dict(zip(a,b))

note that zip is a built in function

Result:
{9: 'wookie', 'dog': 22.4, 'h': 'general'}

7.7 Reverse Lookup

given the value find the key: dictionary not intended for this

one approach is to build a reverse dictionary

1 r e v e r s e d i c t = {}
2 f o r ( key , va lue ) in my dict . i tems ( ) :
3 r e v e r s e d i c t [ va lue ] = key



Lesson 8. Copy and Deep Copy

from copy import copy, deepcopy

When you assign dict2 = dict1, you are not making a copy of dict1, it results in dict2 being
just another name for dict1.

To copy the mutable types like dictionaries, use copy / deepcopy of the copy module.

ref .

27
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Lesson 9. Loops

break: end a loop

continue: ....

9.1 Using a Dictionary

For dictionary d :

for key, value in d.items()

9.2 List and Counter: Enumerate

9.3 List Comprehension

28



Lesson 10. Logic, Conditionals, etc.

1 i f c ond i t i on :
2 [ b lock o f code ]

1 i f c ond i t i on :
2 [ b lock o f code ]
3 e l s e :
4 [ b lock o f code ]

The six comparison operators:

1 == !=
2 < <=
3 > >=

¡ ¡=

29
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Lesson 11. Function

A function is a collection of program instructions that are packaged as a unit and that do
one job. A function is also called a method, a subroutine, a routine, and a subprogram.

An argument is an input that is passed to a function.

The docstring is ...

A parameter is a piece of information that the function needs to do its job.

A positional argument is ..

A keywork argument is ...

11.1 *arg and **kwargs

*arg and **kwargs

1 de f dog (∗∗ kwargs ) :
2 pr in t ( kwargs , type ( kwargs ) )
3

4 kwargs = { ' one ' : 22 , ' two ' : 33}
5 dog (∗∗ kwargs )
6

7 de f ra t (∗ args ) :
8 pr in t ( args , type ( args ) )
9

10 myl i s t = [ 7 , ' hat ' , 9 . 4 3 ]
11 ra t (∗ myl i s t )

another example

1 de f dog (∗∗ kwargs ) :
2 f o r k , v in kwargs . i tems ( ) :
3 pr in t (k , v )
4

5 mydict = { ' a ' : 1 0 , 'b ' : ' ra t ' }
6 dog ( a = 10 , b = ' ra t ' )
7 dog (∗∗mydict )

This will print

31
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b rat

a 10

b rat

a 10

11.2 Passing a Dictionary to a Function

Passing a dictionary and setting default values if not passed within the dictionary; very
clever. Note that the second argument to dict.pop() is the default value if the key is
not found in the dictionary.

1 de f i n i t ( s e l f , master=None , ∗∗kw ) :
2 ”””
3 WIDGET−SPECIFIC OPTIONS
4

5 l o c a l e , f i r s tweekday , year , month , se lectbackground ,
6 s e l e c t f o r e g r ound
7 ”””
8 # remove custom opt ions from kw be fo r e i n i t i a l i z a t i n g t tk . Frame
9 fwday = kw . pop ( ' f i r s tweekday ' , ca l endar .MONDAY)

10 year = kw . pop ( ' year ' , s e l f . datet ime . now ( ) . year )
11 month = kw . pop ( 'month ' , s e l f . datet ime . now ( ) . month)
12 l o c a l e = kw . pop ( ' l o c a l e ' , None )
13 s e l b g = kw . pop ( ' se l ec tbackground ' , '#e c f f c 4 ' )
14 s e l f g = kw . pop ( ' s e l e c t f o r e g r ound ' , '#05640e ' )



Lesson 12. Lambda (Anonymous) Function

This blog post explains the lambda function.

lambda b, c : b*c has arguments (b,c) and returns a value of b*c.

A lambda function does not need parameters. For example, this code

b = 9

k = lambda: b+4.2

print(k())

returns 13.2.

A lambda function without parameters is used by this lambda function to pass arguments
in the context of tkinter:

33
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Lesson 13. File Read and Write

Ref.

13.1 Read a File

with open(file_name) as file_object:

str = file_object.read()

fn = ("test.txt", "w")

fn.write("I am a test file.\n")

fn.write("Line2 ...")

fn.close()

13.2 Read a File by Line

This source states that the best way to read a file line by line is as follows

1 with open ( . . . ) as f :
2 f o r l i n e in f :
3 <do something with l i n e>

The command file_object.readlines() will read a text file by line.

In the following code, I strip off the white space using the rstrip() method as shown.

1 fn = ( ' my f i l e . txt ' )
2 with open ( fn ) as f i l e o b j e c t :
3 t a s k l i s t = [ l i n e . r s t r i p ( ) f o r l i n e in f i l e o b j e c t . r e a d l i n e s ( ) ]

13.3 Modes

34

http://www.pythonforbeginners.com/files/reading-and-writing-files-in-python
https://stackoverflow.com/questions/8009882/how-to-a-read-large-file-line-by-line-in-python
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13.4 Stripping Whitespace
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13.5 Writing a File

with open(fname, "w") as fobj:

fobj.write("hello world"



Lesson 14. Read Comma Separated Variable (csv)

37



Lesson 15. Dump and Load Data to a File

To serialize data is to convert a data structure to a format that is consistent with how
data is stored on the hard drive.

15.1 JSON

best approach: use dump and load

file: json1.py

1 import j son
2

3 pets = { ' cat ' : 'Tabby ' , ' dog ' : 'Hoshi ' }
4

5 # ===== dump s t r i n g (dumps and loads ) ==========
6 with open ( ' p e t l i s t . txt ' , 'w ' ) as f i l e :
7 f i l e . wr i t e ( j son . dumps( pets ) )
8

9 with open ( ' p e t l i s t . txt ' , ' r ' ) as f i l e :
10 my pets = j son . l oads ( f i l e . read ( ) )
11

12 # === dump f i l e l i k e ob j e c t (dump and load ) =====
13 with open ( ' p e t l i s t 2 . txt ' , 'w ' ) as fp :
14 j s on . dump( pets , fp )
15

16 with open ( ' p e t l i s t 2 . txt ' , ' r ' ) as fp :
17 d9 = json . load ( fp )

15.2 Pickle (Binary)

38



Lesson 16. Work with Times and Dates

Guru99

time vs datetime vs timestamp ...

16.1 Getting Started

Import the module (recommendation):
from datetime import datetime, timedelta

datetime.today() Create a DO for now

datetime(2016, 12, 25) Create a DO for a specified date

date1 + timedelta(days=1) : Add one day to a DO

16.2 Delta Time

datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,
weeks=0)

a. Speed: Minutes/Mile

1 import datet ime
2 d = datet ime . t imede l ta ( minutes=1, seconds =40.)
3 r a t e = d / (2/9 . )
4 pr in t ( r a t e )
5 # A 0 :07 : 3 0 pace

b. Time Between Two Dates

39
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16.3 String to DateTime

The command
datetime.datetime.strptime('8/22/16', '%m/%d/%y')

returns a datetime object for Aug. 22, 2016. The letters strp stand for string parse.

16.4 DateTime to String

The commands

1 today = datet ime . datet ime (2016 , 12 , 6)
2 today . s t r f t ime ( 'Today i s the %j th day o f %Y ' )

give the string Today is the '341th day of 2016'.

Line 1 creates a datetime object for 12/6/2016. Then, line 2 creates a string that uses data
from the string time object. By using the string directives any format can be created.

16.5 Directives for Strings

The table that follows lists some of the directives. More directives are described by Tuto-

rials Point

Directive Meaning

%Y year as in 2016

%y year as in 16

%m month as a 2 digit number

%B month name as in December

%b month name as in Dec

%d day of the month (00 to 31)

%e day of the month (1 to 31)

%j day of the year (0 to 365)

%a weekday name, 3 characters (Tue, Thu)

%A weekday name, spelled out (Tuesday)

16.6 Get the ISO 8601 Date as a String

1 datet ime . datet ime . now ( ) . i s o f o rmat ( )
2 Out [ 5 3 ] : '2018−04−18T05 : 50 : 0 7 . 242489 '
3

4 datet ime . datet ime . today ( ) . i s o f o rmat ( )
5 Out [ 5 4 ] : '2018−04−18T05 : 52 : 0 6 . 088015 '
6

7 ds = datet ime . datet ime . now ( ) . i s o f o rmat ( )
8 ds = ds . s p l i t ( 'T ' ) [ 0 ]
9 Out [ 5 5 ] : '2018−04−18 '

http://www.tutorialspoint.com/python/time_strftime.htm
http://www.tutorialspoint.com/python/time_strftime.htm


Lesson 17. File Operations

17.1 Get Folder Path

The command os.path.dirname(path) returns the pathname of the folder. The argu-

ment path can be a pathname of a file or folder.

17.2 Use Relative File Path

2018-10-05: tricky when running from terminal. The code that follows is what I did to get
the folder name of the project that holds the python file in a directory py. Of course, this
algorithm may need to be modified ...

1 path = os . path . abspath ( f i l e ) # path to python s c r i p t
2 dirname = os . path . dirname ( os . path . dirname ( path ) ) # root f o l d e r

17.3 Get Path + File

The command path, file = os.path.split('/Users/donaldelger/Desktop/ 9.pdf')

returns /Users/donaldelger/Desktop and 9.pdf.

17.4 Split Path into Extension plus Other

17.5 Get File Name w/o Extension

pn = pathname of a file. The following returns the file name

41



CHAPTER 17. FILE OPERATIONS 42

os.path.splitext(os.path.basename(pn))[0]

1

2 pn = ' /Users / dona lde l g e r /Desktop/ stove1 . png '
3

4 os . path . basename (pn)
5 Out [ 1 6 ] : ' s tove1 . png '
6

7 os . path . s p l i t e x t ( fn )
8 Out [ 1 8 ] : ( ' s tove1 ' , ' . png ' )
9

10 os . path . s p l i t e x t ( fn ) [ 0 ]
11 Out [ 1 9 ] : ' s tove1 '
12

13 os . path . s p l i t e x t ( os . path . basename (pn ) ) [ 0 ]
14 Out [ 2 0 ] : ' s tove1 '

17.6 Open Finder to Folder

subprocess.run(["open", folder_path])

17.7 Change Directory

The command os.chdir(path) changes the current working directory to the folder path
in pathname path. Note that path can be pathname of a file or a folder.

17.8 Get the Current Working Directory

The command os.getcwd() returns the pathname of the current working directory.

17.9 Check File Modification Date

The command os.path.getmtime(path) gives the Unix timestamp of when the file at

path was last modified.

17.10 Open a File

If something can be done with terminal, it can be done with the module subprocess.

In terminal, the command open ski.jpg will open the image ski.jpg. In python, the
following commands will open this file

1 import subproces s
2 # snip . . . .
3

4 subproces s . run ( [ ' open ' , ' s k i . jpg ' ] )
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17.11 Check for File or Folder

For a directory, use os.path.isdir(folder) .

For a file or directory, use os.path.exists(path)

17.12 Write New File + Create All Folders in Path

1 f i l ename = ' / foo /bar/baz . txt '
2 os . makedirs ( os . path . dirname ( f i l ename ) , e x i s t o k=True )
3 with open ( f i l ename , ”w” ) as f :
4 f . wr i t e ( ”FOOBAR” )

stack overflow

17.13 Make a Folder

For one folder use os.mkdir(path) For a folder plus all folders in the path, use os.makedirs(path)

17.14 Copy a File, Folder, Directory Tree

File: shutil.copyfile(src, des)

Folder or directory tree: shutil.copytree(src, des)

17.15 Open a File or Folder

Use subprocess.run(["open", fname])

17.16 Rename a File or Folder

os.rename(src, dest)

https://stackoverflow.com/questions/12517451/automatically-creating-directories-with-file-output
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17.17 Remove a Directory Tree

The command shutil.rmtree(path) removes a directory, the subdirectories, and the

files. The argument path must be a directory.

17.18 List Files in a Directory

ref

17.19 List Files in Dir + SubDirs

1 import os
2 my dir = ( ' /Users / dona lde l g e r . . . / t p l a t e s / task ' )
3 f o r root , d i r e c t o r i e s , f i l enames in os . walk ( my dir ) :
4 # fo r d i r e c t o r y in d i r e c t o r i e s :
5 # pr in t ( os . path . j o i n ( root , d i r e c t o r y ) )
6 f o r f i l ename in f i l enames :
7 pr in t ( os . path . j o i n ( root , f i l ename ) )

can also use glob

17.20 Building Absolute Path

killer !

1 os . path . j o i n ( a , b )

https://stackoverflow.com/questions/3207219/how-do-i-list-all-files-of-a-directory?rq=1
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17.21 Absolute File Path

Check for absolute path. Returns True if the path is an absolute path; False otherwise

os.pth.isabs(my_path)

Convert a relative path to an absolute path (works iff python working directory equals
the current working directory. If the relative path in the current working directory is
'figs/9sit.tex' , then the command to get the absolute path is

os.path.abspath('figs/9sit.tex')

17.22 Relative File Path

17.23 Remove a File, Folder, or Directory

os.remove() will remove a file

os.rmdir() will remove an empty directory.

shutil.rmtree() will delete a directory and all its contents.



Lesson 18. Comparison Operators

For “not equal,” the preferred operator is = !, <> .

18.1 Sorting

See ref. 1, and ref. 2

The built in function sorted returns a sorted iterable:

>>> sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

For a list, the method sort returns a list in place:

>>> a = [5, 2, 3, 1, 4]

>>> a.sort()

>>> a

[1, 2, 3, 4, 5]

46

https://docs.python.org/3.5/howto/sorting.html#sortinghowto
https://wiki.python.org/moin/HowTo/Sorting


Lesson 19. Exception Handling: Try and Except

Operational error did not work ...

try:

print("Hello World")

except OperationalError:

print("This is an error message!")

OperationalError : Errors which are related to MySQL’s operations.

47



Lesson 20. Logging

Useful Resources about Logging

1. Fang
2. Tutorial 1

Fang Tutorial 1 and Tutorial 2 and logging cookbook.

20.1 Concepts

To reset the logger, restart the kernal, or start a new iPython console, or restart Spyder.

20.2 Minimum Worked Example

import logging

logging.getLogger().setLevel(logging.INFO)

logging.debug('This message should appear on the console')

logging.info('So should this')

logging.warning('And this, too')

logging.error('error')

20.3 Setting the Logging Configuration

import logging

logging.basicConfig(filename='example.log',level=logging.DEBUG)

logging.debug('This message should go to the log file')

logging.info('So should this')

logging.warning('And this, too')
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https://fangpenlin.com/posts/2012/08/26/good-logging-practice-in-python/
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https://docs.python.org/3.6/howto/logging.html
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https://docs.python.org/3/howto/logging-cookbook.html


CHAPTER 20. LOGGING 49

20.4 Customizing the Logging Message

1 l o gg ing . bas i cCon f i g ( format= '%(levelname ) s : (%( asct ime ) s ) '
2 '%(message ) s ' , datefmt= '%m/%d %I :%M' )
3 l o gg ing . getLogger ( ) . s e tLeve l ( l ogg ing .DEBUG)
4 l o gg ing . debug ( 'This message should appear on the conso l e ' )
5 l o gg ing . i n f o ( 'So should t h i s ' )
6 l o gg ing . warning ( 'And th i s , too ' )
7 l o gg ing . e r r o r ( ' e r r o r ' )

The output from the preceeding code is

DEBUG: (05/20 05:34) This message should appear on the console

INFO: (05/20 05:34) So should this

WARNING: (05/20 05:34) And this, too

ERROR: (05/20 05:34) error

20.5 Capturing Exceptions

add the parameter ex_info=True to the specific logging message.

Example: logging.error('Could not open file', exc_info=True)



Lesson 21. Useful Things

21.1 Read a String (Speech)

1 from os import system
2 system ( ' say He l lo World ' )
3 system ( ' say −f /Users / dona lde l g e r /Desktop/ ct . txt ' )

Line 1 Line 2 reads from a file.

To see more, run the manual command for say like this: []: man say

21.2 Compile a LATEX file

In terminal, navigate to a folder with LATEX files. The command $ latexmk -pdf -gg

will compile the files and build a pdf.

In python, this can be done as follows:
subprocess.run(['latexmk','-pdf', '-gg'])
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Lesson 22. Arithmetic Operators

Modulo operator % , This gives the remainder of a division operations. For example 11%3 =
2

Floor operator // , in division this gives the integer part of an answer when the answer is
expressed as number + remaineder. For example 11//3 = 3
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Part II: Standard Modules
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Lesson 23. Math

See python math module reference for details.

degrees(x) : Convert angle x from radians to degrees

radians(x) : Convert angle x from degrees to radians
asin(x): Returns the arc sine of x in radians

53

https://docs.python.org/3/library/math.html#module-math


Lesson 24. Vector Operations

Cross product
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Part III: Object Oriented Programming
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Lesson 25. Big Idea

Control the state (setting of all attributes)

The object has all the variables needed to control the state.
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Lesson 26. Inheritance

1 c l a s s ImageBuilder ( tk . Topleve l ) :
2

3 de f i n i t ( s e l f ) :
4 super ( ) . i n i t (win , bg= ' powder blue ' )
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Lesson 27. Setting and Getting Attributes

To set the attributes of an object from a database row, read the database, extract the row
and convert it to a series object, then

1 d i c t = s e r i e s . t o d i c t ( )
2 f o r key in d i c t :
3 s e t t a t t r ( s e l f , key , d i c t [ key ] )
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Part IV: Techniques for Python Programming
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Lesson 28. Timing Code: What Runs Faster?

To see if option A or B runs fast, get some data:

1 import t ime i t
2 pr in t ( t ime i t . t ime i t ( '1+3 ' , number=500000))

Great intro to the timeit module: ref

Best intro to timeit: ref

Directly Measure the time ref1
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https://pythonprogramming.net/timeit-intermediate-python-tutorial/
https://www.geeksforgeeks.org/timeit-python-examples/
https://pythonhow.com/measure-execution-time-python-code/


Lesson 29. Speaking/Talking

On a mac, you can do this:

1 import os
2 os . system ( ' say ”your t imer has f i n i s h e d ” ' )

ref
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https://stackoverflow.com/questions/16573051/sound-alarm-when-code-finishes


Lesson 30. Docstring

A docstring is a string literal that describes a function or class that occurs at the beginning
that uses """

forms the __doc__ special attribute of the object

For the details of docstrings, see pep-0257
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https://www.python.org/dev/peps/pep-0257/#what-is-a-docstring


Lesson 31. Printing to the Default Printer

This article explains printing using terminal.

On a mac, the command lp myfile will sent myfile to the default printer.

The following code prints a file

1 import subproces s
2 pn = ' /Users / dona lde l g e r /Desktop/dog . png '
3 subproces s . run ( [ ' lp ' , pn ] )
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Lesson 32. CSV to List

Convert CSV to list: This code

str = 'a,b,c'

my_list = str.split(',')

will return ['a', 'b', 'c']

Remove white space about list items:
The method strip() takes a string and removes the white space from the beginning and
end of the string. For example:

>>> ' The dog runs a '.strip()

'The dog runs a'

To get a list and remove white space
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Lesson 33. Print to File

See my jupyter notebook file entitled “Print to file” in my Learn folder.

import sys

orig_stdout = sys.stdout

f = open('/Users/donaldelger/Desktop/dog1.txt', 'w')

sys.stdout = f

for i in range(5):

print ('i = ', i)

sys.stdout = orig_stdout

f.close()
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Lesson 34. Regix Searches

A regular expression is a sequence of characters that defines a search pattern so that a
given string can be searched for the purpose of finding specific parts of this given string.

34.1 Resources

• This page will test regex’s Regex Tester; killer; watch the how to video

• Another regex tester

• Bernd Klien’s Python Course regular expressions and advance regular expres-
sions

• Google education presents this Regex tutorial

• Regex One Tutorial. I think this site is well done. I rediscovered this site on
September 16, 2018.

• Python.org’s documentation of regexs. The kinder version is here

• Harrison’s tutorial

• Tutorial

Tutorials Point

34.2 MWE

1 import re
2

3 s t r i n g = 'Don was born on Oct 17 , 1955 . He i s 61 years o ld . '
4

5 # This w i l l match ( any group o f l e t t e r s ) space ( any group o f numbers )
6 regex = r ” ( [ a−zA−Z]+ \d+)”
7

8 # Find the f i r s t match ; use the group ( ) method to d i sp l ay the match
9 match object = re . s earch ( regex , s t r i n g )

10 f i r s t ma t ch = match object . group ( )
11 pr in t ( f i r s t ma t ch )
12

13 # Find a l l matches
14 match objects = re . f i n d a l l ( regex , s t r i n g )
15 pr in t ( match objects )
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http://regexr.com
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The output is

1 Oct 17
2 [ 'Oct 17 ' , ' i s 61 ' ]

34.3 The search Function

re.search(regex, string, flags=0)

Parameter Description

regex The regular expression to be matched
string The string to be searched
flags Options to control how the matching is done

34.4 The findall Method

The method findall() will find all matches and return a list.

import re # Regular expression module

exampleString = '''

Jessica is 15 years old, and Daniel is 27 years old.

Edward is 97 years old, and his grandfather, Oscar, is 102.

'''

ages = re.findall(r'\d{1,3}',exampleString)

names = re.findall(r'[A-Z][a-z]*',exampleString)

print(ages)

print(names)

''' ********** Output **************

['15', '27', '97', '102']

['Jessica', 'Daniel', 'Edward', 'Oscar']

'''

Notes:
\d{1,3} means to match all numbers that have a length of 1, 2, or 3.

[A-Z][a-z]* means to match all strings that start with a capital letter followed by any
number of lower case letters.
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34.5 Example

mo = re.search('(%fs)(.*)(%fe)', text, re.DOTALL)

This example shows

• How to combine the Regex object building with the searching

• How to group into three groups. This allows a string to be pulled out.

• The use of (.*) to find all characters (except the new line character).

• The use re.DOTALL to match every character including the new line character.

34.6 Methods for regix objects

Figure 34.1: Some methods from the re module

34.7 Group Extraction

match.group() is the whole match text as usual
match.group(1) is the match text corresponding to the 1st left parenthesis
match.group(2) is the text corresponding to the 2nd left parenthesis
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34.8 Named Group (Placeholder)

The code that follows is from ref . The “P” stands for placeholder.

1 >>> import re
2 >>> match = re . search ( ' (?P<name> .∗) (?P<phone> .∗) ' , ' John 123456 ' )
3 >>> match . group ( 'name ' )
4 ' John '

34.9 Greedy versus NonGreedy

append a ? after the characters for nongreedy
example: regex = r'\FRAME.*?special{.*?}}'

34.10 Tex Doc: Extract text between begin and end

Read the text file. The regex is:
regex = '(\\\\begin{document}?)(.*)(\\\\end{document}?)'

The code for extracting the body is:

1 mo = re . search ( regex , tex , re .DOTALL)
2 pr in t ( ' 2 : ' , mo. group ( 2 ) )

https://stackoverflow.com/questions/10059673/named-regular-expression-group-pgroup-nameregexp-what-does-p-stand-for
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34.11 Summary Tables
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Lesson 35. Binary Files

You can read, write, and store a binary file in a variable.

1 f i l e i n = ' /Users / dona lde l g e r /Desktop/ t1 . jpg '
2 f i l e o u t = ' /Users / dona lde l g e r /Desktop/ t2 . jpg '
3

4 with open ( f i l e i n , ” rb” ) as i n f i l e :
5 with open ( f i l e o u t , ”wb” ) as o u t f i l e :
6 f i l e d a t a = i n f i l e . read ( )
7 o u t f i l e . wr i t e ( f i l e d a t a )

In line 4, "rb" stands for read as binary.
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Lesson 36. Raising Exceptions

Use the most specific exception constructor (see the exception heirachy) that semanti-
cally fits your issue. Be specific in your message. Example:
raise ValueError('A very specific bad thing happened')

This article explains how to manually raise/throw an exception.
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Lesson 37. Pretty Print

For data structures, especially nested dictionaries.

1 import ppr int
2 ppr int . ppr int ( whateverdatastructureyouwant )

import pprint

ds = dict((chr(i), list(range(i, i+5))) \

for i in range(65,70))

pprint.pprint(ds, width=10)
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Lesson 38. Debugging

import pdb; pdf.set_trace()
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Lesson 39. Subprocess: Running Other Programs

To run illustrator, or other programs, use subprocess:

1 # ==== open a f i l e in i l l u s t r a t o r ==========================
2 f i l e = ( ' /Users / dona lde l g e r / SpyderPro ject s / Pro j e c t s / '
3 ' 2017−06 image ed i t o r / f i g s / joshna . jpg ' )
4 app = ' /App l i ca t i on s /Adobe I l l u s t r a t o r CS5 .1/Adobe I l l u s t r a t o r . app '
5 subproces s . run ( [ ' open ' , '−a ' , app , f i l e ] )

This code is in:

/Users/donaldelger/SpyderProjects/

Projects/2017-06_image_editor/image_editor.py

To compile a LATEX document, direct the outcome as follows. This keeps a long stream of
text outcome from showing up in iPython.

1 try

2 subprocess.run(['latexmk', '-f', '-pdf', '-gg', '-shell-escape'],

3 stdout=subprocess.DEVNULL,

4 stderr=subprocess.DEVNULL, check=True)

5 except subprocess.CalledProcessError:

6 log.error(f'Could not compile LaTex File for task {pk}')

7 return
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Part V: Updates and Ecosystem Programs: Termi-

nal, Anaconda, . . .
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Lesson 40. Updates to Python

install off of the python installation page. then, invoke python in terminal by typing python
3
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Lesson 41. Terminal

41.1 Open a File (nondefault app)

1 $ open −a s a f a r i /Users / dona lde l g e r /Desktop/my image . jpg

This does not work for illustrator because the file path has spaces in the name. To get
around the spaces, quote the path as follow, or escape the spaces with a \ or drag and
drop the file onto the terminal window.

1 open −a ' /App l i ca t i on s /Adobe I l l u s t r a t o r CS5 .1/Adobe I l l u s t r a t o r . app ' /Users / dona lde l g e r /Desktop/my image . jpg

41.2 Run a Function
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Lesson 42. Anaconda Updates

bin/conda install -c anaconda python=3.6.1

bin/conda update anaconda

bin/conda update conda
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Lesson 43. Spyder

To see the functions, classes, etc (outline): View > Pane > Outline

To update spyder

1. In terminal, navigate to the anaconda folder
2. bin/conda update spyder

For updating spyder in a virtual environment:

43.1 Run from Spotlight

To run a program created from Spyder using spotlight, open Script Editor and write an
AppleScript.

1 t e l l a pp l i c a t i on ”Terminal ”
2 a c t i v a t e
3 do s c r i p t ”python /Users / dona lde l g e r / SpyderPro ject s /CourseBuilderR1/ t a s k s e t . py”
4 end t e l l

Listing 43.1: Example: Running a python program using AppleScript
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Lesson 44. Atom IDE

This video explains how to setup atom.

Editor: Set tab length to 4 spaces. Soft tabs. Show indent guide.
Packages: Turn on auto saved. Install the package atom-runner.

Open config and add two lines:

runner:

python: "/usr/local/bin/python3"

Use control R to run a script.
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Lesson 45. Ipython

45.1 Reset Variables

The command %reset resets variables in iPython.

45.2 Run a Script

To run the script hoshi.py on the desktop, set the current working directory to the

desktop and give ipython the command In [11]: %run ./hoshi.py
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Lesson 46. Add a module

To install the module tabulate the steps are:

1. run terminal

2. navigate to the folder that holds \bin

3. give terminal the command:
conda install tabulate
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Lesson 47. jupyter and jupyterlab

47.1 Jupyter

Corey Schaeffer explain how to use jupyter in this tutorial.

How to launch Jupyter

1. In terminal, navigate to folder holding notebooks.
2. $jupyter notebook

Note: does not seem to work if I leave the canopy virtual environment.

a. Images

Problems: Going up a directory. Absolute image address. Summary to date:

1 <img s r c=” t e s t . png” , width=400> ## Works ; s i z e s c a l i n g
2 <img s r c=” f i g s / t e s t . png” , width=400> ## Recommended opt ion
3 <img s r c=” . . / f i g s / t e s t . png” , width=400> ## Does not work
4 ! [ r a t ] ( t e s t . png ) ## Works ; no s i z e s c a l i n g

47.2 Jupyter Lab

jupyterlab is the next generation of jupyter.

In terminal, give the command jupyter lab .

Toggle comments on and off: command/

tutorial

2

1
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Part VI: Numpy

For WIP, go to
/Users/donaldelger/Documents/*A_C/BookCourses/Python/_wip/numpy.md

This article presents a quick start tutorial for numpy.

a2 = np.array([]) create an ndarray from list

a2.shape find dimensions

a2.reshape(n,m) reshape to dimensions n×m

np.array([1.1]*4) creates ([ 1.1, 1.1, ...])

np.zeros(4) creates [ 0., 0., 0., 0.])

np.ones(2) creates ([ 1., 1.])

np.array(range(0,4)) creates ([0, 1, 2, 3])
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Lesson 48. Create ndarray

48.1 Passing Lists

np.array([[17, 19, 2], [11, 5, 6]], float)

creates the following 3 × 2 array

array([[ 17., 19., 2.],

[ 11., 5., 6.]])

48.2 Random Numbers

The command np.random.rand(3,2) creates

array([[ 0.50691272, 0.43264325],

[ 0.99467586, 0.60813541],

[ 0.6998633 , 0.6262622 ]])
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Lesson 49. Basic Math

np.pi

np.sin(theta)

np.radians(theta) : Convert from degrees to radians

np.linalg.norm(m) Magnitude of vector m

np.cross(r, f) Cross product r × f

add vectors; for example add (2, 9, 4) to (1.1, -1, 3)

import numpy as np

a, b = (2, 9, 4), (1.1, -1, 3)

c, d = np.array(a), np.array(b)

sum = c + d; print(sum)

# Answer: [3.1, 8., 7.]
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Lesson 50. Element Wise Operations

Arithmetic operators on arrays always apply to the elements of the array. This is called
element wise operations.

1 >>> a , b
2 ( array ( [ 2 . 1 , 3 . 4 ] ) , array ( [ 1 0 , 1 0 ] ) )
3 >>> a ∗ b
4 array ( [ 2 1 . , 3 4 . ] )
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Lesson 51. Solving Linear Equations

To solve the equations

3x + y = 9x + 2y = 8

apply the following code

import numpy as np

a = np.array([[3,1], [1,2]])

b = np.array([9,8])

x = np.linalg.solve(a, b)

print(x)

to give x = 2 and y = 3.
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Lesson 52. Converting types of data

tuple(ndarray) : Convert an ndarray to a tuple

ndarray.astype(int) : Convert an ndarray to integer valued
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Lesson 53. Random Sample
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Part VII: Symbolic Math: SymPy
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Lesson 54. Misc

54.1 Declaring Symbols

Symbols need to be declared as shown in the example that follows.

>>> from sympy import *

>>> x = Symbol('x')

>>> y = Symbol('y')

54.2 Integration (Indefinite)

integrate(f, x) returns the indefinite integral
∫
fdx

To do the integral
∫
kxdx, the code is

from sympy import Integral, Symbol

x = Symbol('x')

k = Symbol('k')

print(Integral(k*x, x).doit())

# result: k*x**2/2

As shown, the code returns kx2/2

54.3 Integration (Definite)

The command integrate(f, (x, a, b)) evaluates the definite integral
∫ b
a f(x)dx.

For example,
∫ 1
0 0.5(x− x6)dx can be evaluated using

from sympy import *

x = Symbol('x')

f = (x-x**6)/2

print(integrate(f,(x,0,1)))

# Answer: 5/28
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The code shows that
∫ 1
0 0.5(x− x6)dx = 5/28

54.4 Integration (Pretty Printing)

For the integral
∫

ex cos(x), the following commands

>>> init_printing(use_unicode=False,

wrap_line=False, no_global=True)

>>> integrate(exp(x) * cos(x), x)

give this formatted result.

ex

2
sin(x) +

ex

2
cos(x)



Part VIII: Plotting Data
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Lesson 55. Getting Started

This code, a minimum worked example,

1 import matp lo t l i b . pyplot as p l t
2 p l t . p l o t ( [ 4 0 , 67 , 2 , 22 , 20 , 1 9 . 4 ] )
3 p l t . show ( )

produced this plot

This plot

was produced with this code:

1 de f p l o t b a r s ( s e l f ) :
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2 s e l f . g e t data ( )
3 s e l f . c onve r t da t e s ( )
4 p l t . gca ( ) . xax i s . s e t ma jo r f o rmat t e r (mdates . DateFormatter ( '%b %d ' ) )
5 p l t . gca ( ) . xax i s . s e t ma j o r l o c a t o r (mdates . DayLocator ( ) )
6 p l t . bar ( s e l f . dtobj , s e l f . mi les , alpha =0.3 , c o l o r= ' green ' )
7 p l t . g c f ( ) . autofmt xdate ( )
8 p l t . p l o t ( s e l f . dtobj , s e l f . mi les , ' r−−s ' , a lpha =.5)
9 p l t . t i ck params ( ax i s= 'y ' , l a b e l s i z e =12)

10 p l t . g r i d ( alpha =.4)
11 p l t . x l ab e l ( 'Date ' , f o n t s i z e =12)
12 p l t . y l ab e l ( ' Miles ' , f o n t s i z e =12)
13 p l t . s a v e f i g ( ' /Users / dona lde l g e r /Desktop/myMileage . eps ' , format= ' eps ' )
14 p l t . show ( )



Lesson 56. About Plotting

The seaborn package provides a way to make publication quality graphics. This Chris
Albon post shows shows some common statistical plots.

99

http://seaborn.pydata.org/introduction.html
http://chrisalbon.com/python/pandas_with_seaborn.html
http://chrisalbon.com/python/pandas_with_seaborn.html


Lesson 57. Style Ticks and Tick Labels

Example: The image that follows shows an increase in the font size and a change in the
color.

The code to specify the changes is

plt.tick_params(axis='both', labelsize=20,

labelcolor='red')!

The method is .tick_params(axis='both', **kwargs) . Matplotlib.org gives the de-
tails.
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Lesson 58. Line Types, Colors, and Markers

The image below shows a line that has been modified

This line was modified with the command
plt.plot(x, y, 'v--m')

The technique is to pass information with the string that is passed as the third argument.
This string, which can be in any order, passes information about the color, the marker,
and the line type.

Table 58.1: Line Types

Symbol Explanation

'--' dashed line

'-' solid line

':' dotted line

'-.' dash dot line
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Table 58.2: Line Markers

Symbol Explanation

'v' triangle 1 down

'o' solid circle

'^' triangle 1 up

'3' triangle 2 left

'+' plus

's' square



Lesson 59. Saving a Plot

The method is .savefig(fname, **kwargs)

The maplotlib API gives the details.

The savefig method needs to come before the plt.show() command.

1 fn = ' /Users / dona lde l g e r /Desktop /123 vp2 . pdf '
2 p l t . s a v e f i g ( fn , format= ' pdf ' )
3 p l t . show ( )

Listing 59.1: An example of saving a file
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Lesson 60. LATEX Labels

The figure that follows shows an example

This example was created using

1 import seaborn
2 import matp lo t l i b . pyplot as p l t
3 p l t . r c ( ' t ex t ' , usetex=True )
4 p l t . r c ( ' f ont ' , f ami ly= ' s e r i f ' )
5 p l t . p l o t ( [ 2 , 9 , 1 1 ] , '−−r ' )
6 p l t . x l ab e l ( r 'Time ( s ) ' , f o n t s i z e =18)
7 p l t . y l ab e l ( r ' Displacement (m) f o r $ F = 10 $ ' ,
8 f o n t s i z e =18)
9 p l t . t i ck params ( ax i s= ' both ' , l a b e l s i z e =15)

10 p l t . show ( )

Lines 3 and 4 gives the rc settings needed to invoke LATEX. Regarding “rc”, a stackover-
flow post states that configure files are often ended in “rc”, e.g., .xinitrc . Configura-
tions run and they configure your stuff. This practice started before unix.

This matlplotlib webpage gives details about using LATEX.
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Part IX: SQLite
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Lesson 61. Minimum Program

import sqlite3

db = 'test.db'

conn = sqlite3.connect(db)

c = conn.cursor()

c.close()

conn.close()
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Lesson 62. Select a Record

query = 'SELECT * FROM figs WHERE pk={}'.format(pk)

data = c.execute(query)

values = data.fetchall()[0]
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Lesson 63. Insert a record

Follow this structure!

new = 'moose', 5, 2.11

c.execute('INSERT INTO main (a, b, c) VALUES (?, ?, ?)', new)

conn.commit()

Insert an empty record:
c.execute('INSERT INTO figs DEFAULT VALUES'
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Lesson 64. Find the Maximum of a Column

bb = c.execute('SELECT MAX (goals3_pk) FROM goals3')

pk = bb.fetchall()[0][0] + 1

109



Lesson 65. Delete a Row

parameterized query

self.c.execute('DELETE FROM goals3 WHERE

goals3_pk = ?', (pk,))
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Lesson 66. Get Column Names

data = c.execute("PRAGMA table_info(figs)")

d2 = data.fetchall()

col_names = [d2[i][1] for i in range(len(d2))]

Note: The SQLite PRAGMA command can be used to read or set various environmental
variables and state flags
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Lesson 67. Get Number of Records and Last Record

1 query = 'SELECT Count (∗ ) FROM tasks '
2 data = c . execute ( query )
3 pr in t ( 'Number o f ta sk s : {} ' . format ( data . f e t c h a l l ( ) [ 0 ] [ 0 ] ) )

Listing 67.1: Number of records

1 c . execute ( ”SELECT ∗ FROM tasks ORDER BY pk DESC LIMIT 1” )
2 r e s u l t = c . f e t chone ( )
3 l a s t pk = r e s u l t [ 0 ]
4 pr in t ( ' l a s t pk : {} ' . format ( l a s t pk ) )

Listing 67.2: Last Record
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Lesson 68. Get ID of Last Row Inserted

get the lastrowid attribute from the cursor object

self.pk = c.lastrowid
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Lesson 69. Insert Date or Timestamp as Default

In the db browser, when you create or modify the table insert CURRENT DATE in the
default field.

ref
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Lesson 70. Parameterized Query

Key Idea: Do not assemble a query using Python’s string operations because doing so
makes your program vulnerable to an SQL injection attack.

Ref.

A PQ is a ”variable” or ”parameter” token that specifies a placeholder in the expression
for a value that is filled in at runtime using the sqlite3 bind() family of C/C++ interfaces.

Example 1. Notice the comma:

c.execute('DELETE FROM goals WHERE pk = ?', (pk,))

Example 2:

c.execute('UPDATE goals SET desc=? WHERE pk=?', (new, pk))

Example 3:

purchases = [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),

('2006-04-05', 'BUY', 'MSFT', 1000, 72.00),

('2006-04-06', 'SELL', 'IBM', 500, 53.00),

]

c.executemany('INSERT INTO stocks VALUES (?,?,?,?,?)', purchases)
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Lesson 71. Row Dictionary

The command df.to_dict(orient='records') reads each row of a dataframe into a
dictionary and stores the collection of dictionaries to a list. The code below reads one row
into a df and then extracts this row into a dictionary.

query = 'SELECT * FROM ats WHERE pk={}'.format(pk)

df = pd.read_sql_query(query, conn)

record = df.to_dict(orient='records')[0]
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Lesson 72. Read Table to Pandas

df = pd.read_sql_query(

"SELECT * FROM main ORDER BY seq", conn)

117



Lesson 73. Read Table, Modify, Write to sqlite3

import pandas as pd

import sqlite3

db = '/Users/donaldelger/Desktop/build_goals/goals.db'

conn = sqlite3.connect(db)

c = conn.cursor()

df = pd.read_sql_query("SELECT * FROM g1 ORDER BY seq", conn)

print(df)

df.iloc[1,1] = 'Smile often'

print(df)

c.executescript('drop table if exists g1;')

df.to_sql('g1', conn)
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Lesson 74. Create New Table or DataBase

To create a new dbase, use the connect method and this will automatically create a new
file.

The main idea is to create a table. This example

try:

conn = sqlite3.connect(self.dbase)

c = conn.cursor()

qy = """

CREATE TABLE goals (

pk INT PRIMARY KEY NOT NULL,

desc TEXT NOT NULL,

path TEXT,

mpath TEXT

)

"""

c.execute(qy)

logging.info('new course dbase successfully created')

except:

logging.error('Could not create a new dbase for the course\n')

shows the creation of a simple table. Notice that a primary key will auto increment by
default. Thus, I did not specify a keyword.
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Lesson 75. Sqlite Shell

Ref

sqlite3 or sqlite3 db path: (to start)
terminate commands with ;
dot commands: .databases

75.1 Copying a Table from one dbase to another

ref

1 i n s e r t i n to main . gg s e l e c t ∗ from AM. g t e s t ;
2 attach ' /Users / dona lde l g e r /Desktop/ s q l i t e l e a r n / sq1 . db ' as AM;
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Part X: Pandas
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Lesson 76. Series

76.1 Series to list

weight = pd.Series.tolist(criteria_df['weight'])
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Lesson 77. Create a DataFrame

killer article

77.1 From Records (rows)

1 import pandas as pd
2 columns = [ ' owner ' , ' dogs ' ]
3 rows=[( ' ben ' , 0 ) , ( ' michael ' , 1 ) , ( ' l i nda ' , 1 ) ]
4 df = pd . DataFrame . f rom reco rds ( rows , columns=columns )
5 pr in t ( df )

77.2 From numpy ndarray

a. Unlabeled rows and columns

The following dataframe

0 1 2

0 2 Build course builder 0.9

1 7 Build three courses 1.1

was created using

import pandas as pd

import numpy as np

data = np.array([

[2, 'Build course builder', .9],

[7, 'Build three courses', 1.1]])

df = pd.DataFrame(data)

b. Labeled Rows and Columns

The dataframe
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pk task seq

--- ---- -------------------- -----

pk2 2 Build course builder 0.9

pk1 7 Build three courses 1.1

was created using

import pandas as pd

import numpy as np

import tabulate

data = np.array([

[2, 'Build course builder', .9],

[7, 'Build three courses', 1.1]])

df = pd.DataFrame(data, columns=

['pk','task','seq'], index=['pk2','pk1'])

print(tabulate.tabulate(df,

headers=list(df.columns)))

77.3 From dictionary

d = {'a': [1, 2, 3], 'b': [4, 5, 6]} # dict

df = pd.DataFrame(d)

"""" Result

a b

0 1 4

1 2 5

2 3 6 """"

77.4 From Excel File

1 import pandas as pd
2

3 fname = ' /Users / dona lde l g e r /Desktop/ t e s t . x l sx '
4

5 df = pd . r e ad ex c e l ( fname , sheetname=0)
6 # can a l s o index shee t by name or f e t ch a l l s h e e t s
7 myl i s t = df [ 'pk ' ] . t o l i s t ( )

77.5 From sqlite3 DataBase
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1 import s q l i t e 3
2 import pandas as pd
3 con = s q l i t e 3 . connect ( 'winco . db ' )
4 df = pd . r e ad sq l qu e ry ( 'SELECT ∗ FROM items ORDER by l o c a t i o n f k ' , con )



Lesson 78. Cells

Get value from a cell:
df.get_value('row', 'cell')

Set a value of a cell:
df.set_value('row', 'cell', 'new ...')

78.1 Given a cell value, Get the row
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Lesson 79. Column Operations

79.1 Get One or More Columns

df['seq']

df[['seq', 'goal']]

79.2 Column to List

categories = df['categories'].to_list()

79.3 List Column Names

list(df.columns)

df.columns.tolist()

79.4 Get the Index

1 r e co rd s = df . index . va lue s

df.index : this will return an iterable

df.index.tolist() this will return a list

records is a numpy ndarray object (iterable)

79.5 Sum a column

total = df['MyColumn'].sum()

79.6 Divide values in one column by another column

1 df [ ' c ' ] = df [ 'b ' ] / df [ ' a ' ]
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79.7 Delete a Column

The command is df.drop('seq', axis=1) . The axis=1 parameter denotes that a

column (not a row) is being dropped.

79.8 Add a Column

Use the command df['seq'] = seq2 , where 'seq' is the name of the new column

79.9 Sort a df by One Column

To sort by column named seq , use df.sort_values('seq', inplace=True)

79.10 Specify The Order in Which the Columns Appear

df.reindex_axis([list of column names sorted in desired order], axis=1)



Lesson 80. Number of Rows/Columns in a df

len(df) # number rows

len(df.columns) # number of columns

df.shape # number of rows and columns

Out[1]: (6, 9)
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Lesson 81. Work with Rows

81.1 Iterate over Rows in a Dataframe

for (index, row) in df.iterrows():

81.2 Add a row to a DataFrame

Step 1: Create a dataframe with one row

Step 2: Append the new dataframe to the existing df

81.3 Select Certain Rows

Select all rows with 'level' equal to 1.

1 df [ df [ ' l e v e l ' ] == 1 ]

81.4 Select One Row; More that one row

1 df [ 0 : 1 ] # s e l e c t row with index 0
2 df [ 3 : 4 ] # s e l e c t row with index 3

81.5 Select Row(s) based on Partial String Search

df[df['text'].str.contains("flu")]
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81.6 Select Rows based on a List

This ref gives a simple example.

1 myl i s t = [ ' grano la ' , ' sa lami ' ]
2 df2 = df [ df [ ' item ' ] . i s i n ( my l i s t ) ]

81.7 Reset the Index

Slice some rows out and then reindex to 0, 1, 2, ...

df = df.reset_index(drop=True)

Need the drop=True or an extra column “index” is added



Lesson 82. Convert a Series to a Dictionary

for (index, row) in df.iterrows():

video_record = row.to_dict()
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Lesson 83. Deep Copy

The command df.copy(deep=True) below is useful sometimes if a shallow copy is an
issue.
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Lesson 84. Dropping Rows and Columns

drop several rows
df.drop(['Cochise', 'Pima'])

Ref: Chris Albon
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Lesson 85. Join Dataframes

1 f rames = [ df1 , df2 , df3 , . . . ]
2 df = pd . concat ( frames )
3 df . r e s e t i n d e x ( drop=True )
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Lesson 86. DataFrame to SQL
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Lesson 87. DataFrame to other formats

87.1 DataFrame to Table

a. Working Example

body2 = tabulate(dfx, headers="keys", tablefmt="latex", showindex="never")

b. Background

This website explains how to use tabulate.

The module tabulate converts a pandas dataframe to a table. This module needs to be
install into the anaconda environment. The code below provides an example

import pandas as pd

import tabulate

pk = [2, 17, 1]

seq = [.5, 1, 4.5]

desc = ['define ct', 'define claim', 'define truth']

dic = {'pk': pk, 'seq': seq, 'desc': desc}

df = pd.DataFrame(data=dic)

col_labels = ['i', 'desc', 'pk', 'seq']

print(tabulate.tabulate(df, headers=col_labels))

The output is

i desc pk seq

--- ------------ ---- -----

0 define ct 2 0.5

1 define claim 17 1

2 define truth 1 4.5
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87.2 DataFrame to csv

For the previous table, the command df.to_csv(index_label="num") gives the following
string (carriage returns were added:

'num,desc,pk,seq

\n0,define ct,2,0.5

\n1,define claim,17,1.0\

n2,define truth,1,4.5\n'



Part XI: Tkinter

tkdocs tutorial

Bernd Klein’s Tutorial
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Lesson 88. Big Picture: How to Use TkInter

Good Overview

Bryan Oakley on Stack Overflow

import tkinter as tk

from tkinter import ttk

class SimpleTable(tk.Frame):

def __init__(self, win, df):

super().__init__(master = win)

ttk.Button(self, text='test').grid()

root = tk.Tk()

mt = SimpleTable(root, df)

root.geometry('300x400')

mt.grid()

root.mainloop()
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Lesson 89. Label Widget

Ref.

from tkinter import *

root = Tk()

root.title("Colorizing a Font")

Label(root,

text="Red Text in Times Font",

fg = "red",

font = "Times").pack()

Label(root,

text="Green Text in Helvetica Font",

fg = "light green",

bg = "dark green",

font = "Helvetica 16 bold italic").pack()

Label(root,

text="Blue Text in Verdana bold",

fg = "blue",

bg = "yellow",

font = "Verdana 10 bold").pack()

root.mainloop()
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Lesson 90. Button

90.1 Use Image

The next image shows a button displayed with an image and one displayed with text.

1 import t k i n t e r as tk
2 from PIL import ImageTk , Image
3

4 de f t a l k ( ) :
5 pr in t ( ' hi the re ' )
6

7 root = tk .Tk( )
8 image = Image . open ( ”temp . png” )
9 new s i ze = in t (22 / image . s i z e [ 1 ] ∗ image . s i z e [ 0 ] ) , 22 # 22 p i x e l s high

10 image2 = image . r e s i z e ( new s ize , Image .ANTIALIAS)
11 image3= ImageTk . PhotoImage ( image2 )
12 b = tk . Button ( root , t ex t=” h e l l o ” , image=image3 , command=ta l k )
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13 b . image = image
14 b . g r id ( padx=15, pady=15)
15 tk . Button ( root , t ex t= 'Text Button ' ) . g r i d ( )
16 root . mainloop ( )



Lesson 91. Text Widget

The window

was generated by

from tkinter import *

root = Tk()

T = Text(root, height=10, width=50)

T.pack()

quote = """HAMLET: To be, or not to be--

that is the question ... """

T.insert(END, quote)

mainloop()

note: use tk.END for the index for common module import

The following image shows a scroll bar

that was added using

144



CHAPTER 91. TEXT WIDGET 145

from tkinter import *

root = Tk()

S = Scrollbar(root)

T = Text(root, height=4, width=50)

S.pack(side=RIGHT, fill=Y)

T.pack(side=LEFT, fill=Y)

S.config(command=T.yview)

T.config(yscrollcommand=S.set)

quote = """HAMLET: To be, or not to be ..."""

T.insert(END, quote)

mainloop( )

91.1 Get Text

box.get('1.0', 'end-1c')

The ’1.0’ means to read text from line 1 character zero. The ’end-1c’ means to read text
to the end character minus one character. Without subtracting one character, a line break
will be added.



Lesson 92. ScrolledText Widget

Combine a text box and a vertical scrollbar:

1 import t k i n t e r . s c r o l l e d t e x t as tk s t
2 text box = tk s t . Sc ro l l edText ( master=w2 , wrap=tk .WORD, width=79, he ight=10, bg= ' powder blue ' )
3 text box . g r id ( padx=10, pady=10)
4 t p l a t e = ' See . . \nExperience . . \ nEngage in . . \ nDine at . . \ Check out '
5 text box . i n s e r t ( tk . INSERT, t p l a t e )

To get the contents of the window: example

1 s c r o l l t e x t w idge t name . get ( 1 . 0 , tk .END)

start at line 1, character zero and finish at the end of the text; returns a string
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Lesson 93. Frame

1 import t k i n t e r as tk
2 root = tk .Tk( )
3 root . geometry ( ' 200x200+300+300 ' )
4 f 1 = tk . Frame( root , bd=3, r e l i e f= ' groove ' , bg= ' powder blue ' )
5 f 1 . g r i d ( padx=10, pady=10)
6 tk . Label ( f1 , t ex t=”Hey Noose” ) . g r i d ( padx=10, pady=10)
7 root . mainloop ( )
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Lesson 94. LabelFrame

1 f 1 = tk . LabelFrame ( s e l f , bd = 2 , t ex t = ”Learning Outcomes” ,
2 f g = ' red ' , r e l i e f = ' r a i s e d ' , padx = 5 ,
3 pady = 5 , font = ”Verdana 12 bold ” )
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Lesson 95. Toplevel

The toplevel window

was created using

import tkinter as tk

root = tk.Tk()

root.geometry('220x200')

tk.Label(root, text="Main Window").grid()

top = Toplevel(bg='red')

top.title("User Input")

top.geometry('200x100')

top.lift(root)

tk.Label(top, text="New Window").grid()

root.mainloop()
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Lesson 96. Entry Widget

Fig. 96.1 shows an example of an entry widget

Figure 96.1: An entry widget

The code to create Fig. 96.1 is presented in Listing 96.

1 import t k i n t e r as tk
2

3

4 de f pt ( ) :
5 pr in t (dd . get ( ) )
6

7 root = tk .Tk( )
8 tk . Label ( root , t ex t=”Favor i t e Food?” ) . g r i d ( )
9 dd = tk . Entry ( root )

10 dd . g r id ( )
11 dd . i n s e r t (0 , ' p izza ' )
12 tk . Button ( root , t ex t= ' pr in t entry ' , command=pt ) . g r i d ( )
13 root . mainloop ( )

Listing 96.1: Listing for Entry Widget Code

96.1 Updating an Entry Box

1

2 # se t up the entry box
3 pk box = tk . Entry ( s e l f )
4 pk box . g r id ( )
5 pk = 22
6 pk box . i n s e r t (0 , pk )
7

8 # update the entry box a f t e r pk has changed
9 pk box . d e l e t e (0 , ' end ' )

10 new pk = 29
11 pk box . i n s e r t (0 , new pk )
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96.2 Scrolling Entry Widget

import tkinter as tk

root = tk.Tk()

scrollbar = tk.Scrollbar(orient="horizontal")

e3 =tk.Entry(xscrollcommand=scrollbar.set)

e3.focus()

e3.pack(side="bottom",fill="x")

#e3.grid(row=10, column=7)

scrollbar.pack(fill="x")

scrollbar.config(command=e3.xview)

root.mainloop()



Lesson 97. Combobox

1 #======= Combo Box to S e l e c t CookBook Categor i e s ============
2 ca t s = s e l f . cookbook . c a t e g o r i e s ( ) # L i s t to d i sp l ay
3 cb = ttk . Combobox( s e l f , va lue s=cat s )
4 cb . g r id ( row = 0 , column=1, s t i c k y = tk .W)
5 cb . s e t ( ca t s [ 0 ] )
6 s e l f . combobox = cb
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Lesson 98. simpledialog

98.1 Example

The following window gets user input.

To get the selected value from the combobox, use self.combogox.get()

The previous window was created with

import tkinter.simpledialog as sd

import tkinter as tk

from tkinter import ttk

def ask_age():

age = sd.askinteger("askinteger", "Enter your age")

print(age)

root = tk.Tk()

root.geometry('200x100')

tk.Button(root, text='Ask Age', command=ask_age).grid()

root.mainloop()

98.2 Parameters

seq = sd.askstring('Seq Number?', 'Sequence number?'

chap = sd.askinteger("Print New Problems", "Chapter number?")

153



Lesson 99. Checkbutton Widget

The purpose of a checkbutton widget is to allow the user to read and select a two-way
choice.

Ref.

Use tk not ttk due to scant ttk documentation

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3

4 de f p a c k l i s t ( ) :
5 pr in t ( var . get ( ) , chk . s t a t e ( ) )
6

7 tkwindow = tk .Tk( )
8 tkwindow . geometry ( ' 200x200 ' )
9

10 # checkbox with ttk
11 chk = ttk . Checkbutton ( tkwindow , t ext=” foo ” )
12 chk . g r id ( column=0, row=0, s t i c k y= 'W' )
13

14 # checkbox with tk
15 var = tk . IntVar ( )
16 var . s e t (1 ) # how to s e t d e f au l t s t a tu s as checked . . .
17 cb = tk . Checkbutton ( tkwindow , t ext= 'Don\ ' s Kit ' , v a r i a b l e=var )
18 cb . g r id ( s t i c k y= 'W' )
19

20 t tk . Button ( tkwindow , t ext=”Pr int Checkbutton Values ” , command=p a c k l i s t ) . g r i d ( )
21

22 tkwindow . mainloop ( )

99.1 Example
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path name: ../Learn/tkCheckbutton/checkbutton_selector.py

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3

4 de f g e t i t ems ( ) :
5 pr in t ( )
6 f o r ( i , item ) in enumerate ( items ) :
7 i f cb [ i ] . get ( ) :
8 pr in t ( item )
9

10 i tems = [ ' a ' , 'b ' , ' c ' , 'd ' ]
11

12 root = tk .Tk( )
13 f 1 = tk . Frame( root )
14 f 1 . g r i d ( padx=15, pady=15)
15

16 cb s t a tu s = [ 0 , 1 , 0 , 1 ]
17 cb = [ ]
18 f o r ( i , item ) in enumerate ( items ) :
19 cb . append ( tk . IntVar ( ) )
20 cb [ i ] . s e t ( cb s t a tu s [ i ] )
21 widget = tk . Checkbutton ( f1 , t ex t=item , va r i ab l e=cb [ i ] )
22 widget . g r i d ( s t i c k y=tk .W)
23

24 t tk . Button ( f1 , t ex t= ' L i s t Se l e c t ed Items ' , command=ge t i t ems ) . g r i d ( s t i c ky=tk .W)
25

26 tk . mainloop ( )



Lesson 100. Listbox Widget

The purpose of a listbox is to display a list and then allow the user to select one or more
item.

The ref describes how to add a scroll bar to a Listbox widget.

1 # Listbox with tk
2 import t k i n t e r as tk
3

4 de f pk i t s ( ) :
5 ””” p r in t the s e l e c t e d l i s t i t e rms ”””
6 index = k i t s l b o x . c u r s e l e c t i o n ( )
7 f o r i in index :
8 pr in t ( k i t s [ i ] )
9

10 tkwindow = tk .Tk( )
11 tkwindow . geometry ( ' 200x200 ' )
12

13 tk . Button ( tkwindow , t ext= ' Se l e c t Kits ' , command=pk i t s ) . g r i d ( s t i c k y=tk .W)
14

15 k i t s = [ 'Don\ ' s k i t ' , 'Gear Box 1 ' , 'XC Ski ' , ' Alpine Ski ' ]
16

17 k i t s l b o x = tk . Listbox ( tkwindow , se lectmode=tk .MULTIPLE, he ight=len ( k i t s ) )
18 k i t s l b o x . g r i d ( )
19

20 f o r k i t in k i t s :
21 k i t s l b o x . i n s e r t ( tk .END, k i t )
22

23 tkwindow . mainloop ( )
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Lesson 101. Canvas

Some references are:

• tkdocs tutorial
• Great tutorial: here.
• EU site

101.1 Line

import tkinter as tk

root = tk.Tk()

root.geometry('350x200+1000+0')

root.title('Canvas Example')

w = tk.Canvas(root, borderwidth=2, bg='bisque', relief='groove',

width=300, height=150)

w.grid(padx=10, pady=10)

w.create_line(10, 20, 200, 100, fill='red', width=2)

root.mainloop()
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101.2 Image

# Add a path to CourseBuilder

import sys

sys.path.append('/Users/donaldelger/SpyderProjects/CourseBuilderR1')

import tkinter as tk

import image

root = tk.Tk()

root.geometry('1600x800+700+0')

# ============= Add the canvas ===========================

c1 = tk.Canvas(root, width=1600, height=800, bg='bisque', relief='groove')

c1.grid()

# =========== Add the leftmost image ===============================

image1 = '/Users/donaldelger/SpyderProjects/Learn/tkCanvas/figs/p3.jpg'

i1 = image.Image4tk(image1).tkimg

c1.create_image(400, 400, image=i1)

c1.image = i1 # prevent the tk.image problem by saving the file

# =========== Add the rightmost image ===============================

image2 = '/Users/donaldelger/SpyderProjects/Learn/tkCanvas/figs/p4.jpg'

i2 = image.Image4tk(image2).tkimg

c1.create_image(1200, 400, image=i2)

c1.image = i1

root.mainloop()



Lesson 102. Interact with User: Dialog, Message, File

This works:

1 ””” Return the f u l l path to the ex c e l f i l e conta in ing task pks ”””
2 root = tk .Tk( )
3 root . withdraw ( )
4 e x c e l f o l d e r = ' /Users / dona lde l g e r /Documents/ EFM12E/ Exc e l L i s t s '
5 f i l ename = askopenf i l ename ( parent=root , i n i t i a l d i r=e x c e l f o l d e r )
6 root . update ( )
7 root . des t roy ( )
8 r e turn f i l ename

The filedialog module. See this article.

.askopenfilename(option=value, ...) Select an existing file.

.asksaveasfilename(option=value, ...) Create or modify an existing file.

1 from tk i n t e r import Tk
2 from tk i n t e r . f i l e d i a l o g import askopenf i l ename
3

4 Tk ( ) . withdraw ( )
5 f i l ename = askopenf i l ename ( )
6 pr in t ( f i l ename )

to start with a initial directory:
filename = askopenfilename(initialdir=mydir)

Code that works for opening an existing file (on desktop)

1 from tk i n t e r import f i l e d i a l o g as fd
2 import t k i n t e r as tk
3 root = tk .Tk( )
4 md = ' /Users / dona lde l g e r /Desktop '
5 fn = fd . askopenf i l ename ( i n i t i a l d i r=md)
6 root . des t roy ( )
7 pr in t ( fn )

Problem: file selection window does not close. Solution:

root = tk.Tk()

md = '/Users/donaldelger/Documents/*A_C/BookCourses/Finance/tasks/4/views'

filename = askopenfilename(initialdir=md)

root.destroy()
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102.1 Get a New File Name From User

1 from tk i n t e r import f i l e d i a l o g as fd
2 f o l d e r = ' /Users / dona lde l g e r /Desktop/ gear / '
3 i f not os . path . i s d i r ( f o l d e r ) :
4 os . mkdir ( path )
5 fn = fd . a sk savea s f i l ename ( i n i t i a l d i r=fo l d e r , d e f au l t e x t en s i on= ' . tex ' ,
6 i n i t i a l f i l e= ' g e a r l i s t ' )
7 i f fn :
8 pr in t ( fn )



Lesson 103. Open/Create a File or Folder

1 fname=fd . a s k s a v e a s f i l e ( i n i t i a l d i r=fo l d e r , i n i t i a l f i l e= 'name . tex ' )

NMT describes the details

103.1 Open/Create a Folder

title does not seem to do anything

1 import t k i n t e r as tk
2 from tk i n t e r import f i l e d i a l o g as fd
3 root = tk .Tk( )
4 root . d i r e c t o r y = fd . a s kd i r e c t o r y ( t i t l e=my t i t l e , i n i t i a l d i r=my path )
5 pr in t ( root . d i r e c t o r y )
6 root . mainloop ( )
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Lesson 104. Notebook Widget (Tabbed)

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3 from PIL import ImageTk , Image
4

5 root = tk .Tk( )
6 n = ttk . Notebook ( root )
7 f 1 = ttk . Frame(n) # f i r s t page , which would get widgets gr idded in to i t
8 f 2 = ttk . Frame(n) # second page
9 n . add ( f1 , t ex t= 'One ' )

10 n . add ( f2 , t ex t= 'Two ' )
11 n . g r id ( )
12

13 t tk . Label ( f1 , t ex t = 'howdy hosh i ' ) . g r i d ( )
14 t tk . Label ( f2 , t ex t = 'walk hosh i ' ) . g r i d ( )
15

16 root . mainloop ( )

Listing 104.1: Example of a simple notebook
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Lesson 105. Message Box

105.1 Warning Message Box

A message box looks like

The code that created this example is

1 import t k i n t e r as tk
2 from tk i n t e r import messagebox
3

4 de f t e s t ( ) :
5 messagebox . showerror ( ”Warning ! ” , ”Error in . . . ” )
6

7 top = tk .Tk( )
8 top . geometry ( ”200x100” )
9 B1 = tk . Button ( top , t ex t=”Test MessageBox” ,

10 command=t e s t )
11 B1 . p lace ( x=35, y=50)
12 top . mainloop ( )

105.2 Yes/No Messagebox

This message box is used for logic.
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import tkinter as tk

from tkinter import messagebox

def new_book():

if messagebox.askyesno('Check', 'Really create a new book?'):

# call NewBook here

pass

return

root = tk.Tk()

tk.Button(root, text='New Book', command=new_book).grid()

root.mainloop()

The following code asks one yes/no question and then destroys the widget

1 import t k i n t e r as tk
2 from tk i n t e r import messagebox
3

4 c l a s s Question :
5 ””” Ask one ques t i on and then des t roy the widget ”””
6 de f i n i t ( s e l f ) :
7 s e l f . root = tk .Tk( )
8 tk . Label ( s e l f . root , t ex t= 'Move Forward? ' ) . g r i d ( )
9 s e l f . root . geometry ( ' 300x50+0+0 ' )

10 s e l f . r e sponse = messagebox . askyesno ( 'Check ' ,
11 ' Real ly c r e a t e new task f o l d e r s ? ' )
12 s e l f . root . des t roy ( )
13 s e l f . root . mainloop ( )
14

15 a = Question ( )
16 pr in t ( a . r e sponse )

105.3 Box Types

showinfo()
showwarning()
showerror ()
askquestion()
askokcancel()
askyesno ()
askretrycancel ()



Lesson 106. The filedialog module

106.1 Overview of the 3 module functions

106.2 askdirectory

You can get an existing directory or create a new directory.

The function returns the name of the directory.

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3 from tk i n t e r import f i l e d i a l o g as fd
4

5 de f f l d ( ) :
6 d i r = ' /Users / dona lde l g e r /Desktop '
7 d i r e c t o r y = fd . a s kd i r e c t o r y ( i n i t i a l d i r=dir ,
8 message= ' s e l e c t the root f o l d e r ' )
9 pr in t ( d i r e c t o r y )

10

11 root = tk .Tk( )
12 t tk . Button ( root , t ex t= 'Get Folder ' , command=f l d ) . g r i d ( padx=25, pady=25)
13 root . mainloop ( )
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Lesson 107. Entry box, Get Data on Return

task. create an entry box such that a return will read the data

def callback(event):

print(dd.get())

# Build a Gui and get the cell value on return ...

import tkinter as tk

root = tk.Tk()

root.geometry('500x200+0+1000')

dd = tk.Entry(root)

dd.grid()

dd.bind("<Return>", callback)

root.mainloop()

Recover which widget was clicked: event.widget

Get widget’s data: event.widget.get()
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Lesson 108. Grid
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Lesson 109. Text Box with Scrolling

from tkinter import *

root = Tk()

root.title('Scrolling Text Box Example')

S = Scrollbar(root)

T = Text(root, height=4, width=50)

S.grid(sticky='nsew', row=0, column=1)

T.grid(sticky='nsew', row = 0, column=0)

S.config(command=T.yview)

T.config(yscrollcommand=S.set)

petlist = 'dog\ncat\nrat \nsnake\nhampster\nfish \nsnake\nhampster\nfish '

T.insert(END, petlist)

Entry(root).grid(sticky='W')

mainloop( )
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Lesson 110. Passing Variables Using Lambda

A lambda function without parameters is used by this lambda function to pass arguments
in the context of tkinter:
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Lesson 111. Event Binding

To bind widget “pk”, describe the event and list the function to call. If the function is a
method in a class, define the arguments as (self, event).

pk.bind('<Return>', self.view)

def view(self, event):

111.1 Bind to Main Window

The widget needs focus. See stackoverflow. For example:

1 de f hey ( event ) :
2 pr in t ( 'hey , hey , hey . . . ' )
3

4 import t k i n t e r as tk
5

6 root = tk .Tk( )
7 tk . Label ( root , t ex t=”Hoshi i s at my window” ) . g r i d ( )
8 tw = tk . Text ( root )
9 tw . g r id ( )

10 tw . bind ( '<Return> ' , hey )
11 tw . f o c u s s e t ( )
12 tw . bind ( '<Left> ' , hey )
13 root . mainloop ( )
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Another example, event binding is used to select a line of text in a text widget.

1 de f hey ( event ) :
2 pr in t ( 'hey , hey , hey . . . ' )
3 de f g e t l i n e ( event ) :
4 pr in t ( ' g e t t i n g l i n e ' )
5 pr in t ( tw . get ( ' s e l . f i r s t l i n e s t a r t ' , ' s e l . l a s t l i n e end ' ) )
6 pr in t ( tw . get ( ' cur rent l i n e s t a r t ' , ' cur rent l i n e end ' ) )
7

8 import t k i n t e r as tk
9

10 root = tk .Tk( )
11 tk . Label ( root , t ex t=”Hoshi i s at my window” ) . g r i d ( )
12 tw = tk . Text ( root )
13 tw . g r id ( )
14 tw . bind ( '<Return> ' , hey )
15 #KP Down
16 tw . f o c u s s e t ( )
17 tw . bind ( '<Left> ' , hey )
18 tw . bind ( '<Sh i f t−Up> ' , g e t l i n e )
19 root . mainloop ( )



Lesson 112. Removing and Hiding Widgets

calling widget.destroy() removes the widget and all its children.

calling widget.grid_forget() removes the widget from view but does get rid of it.

Note! For removing/hiding images, see the tk image problem in Lesson 121.
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Lesson 113. Images

For a gif:

myimage = tk.PhotoImage(file=myfile)

tk.Label(root, image=myimage)

For a non-gif: I have written a class to convert an image file to a tk image objects.
/Users/donaldelger/SpyderProjects/CourseBuilderR1/image.py
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Lesson 114. Getting Widgets (Images) to Cycle

Need to take care of the tk Image Problems; see 121

Create a widget variable name that is global.

Use either the widget.destroy() or widget.grid_forget()

(both will work ...)
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Lesson 115. Power User Methods

115.1 Making Widgets Stretchable; Controlling widget size

Use the grid_columnconfigure method on the widget

1 root = Tk( )
2 root . g r id co lumncon f i gu re (0 , weight=1)
3 root . g r i d r owcon f i gu r e (0 , weight=1)
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115.2 Finding/Changing the Attributes of Widget

This was the key for getting images to cycle:

Use w.configure method

1 de f showImage ( i ) :
2 i f i [ 0 ] > 2 :
3 i [ 0 ] = 0
4 pr in t ( i )
5 my l i s t = [ image tk , image tk1 , image tkc ]
6 l b l 1 . c on f i gu r e ( image=my l i s t [ i [ 0 ] ] )
7 i [ 0 ] = i [ 0 ] + 1

The following message displays for 2 seconds.

115.3 Displaying a Message for 5 seconds (or 2)

1 top = tk . Topleve l ( s e l f , bg= ' powder blue ' )
2 f ont1 = ”He lve t i ca 80 bold i t a l i c ”
3 msg = 'Updated : pk = {} ' . format ( dct [ 'pk ' ] )
4

5 l a b e l 1 = tk . Label ( top , t ex t=msg , width=len (msg ) , f ont=font1 )
6 l a b e l 1 . g r i d ( padx=30, pady=30)
7 top . a f t e r (2000 , top . des t roy )



Lesson 116. Calendar

This is source code for ttkcalendar.py which I modified to run in current version of tk.

Ref

Needed to revise the ttkcalendar.py module

Files are stored in learn/ttkcalendar folder.

1 import t k i n t e r as tk
2 import t tkca l enda r
3 import t k i n t e r . s imp l ed i a l og as sd
4 from tk i n t e r import t tk
5

6 de f don ( ) :
7 de f g e t da t e ( ) :
8 x = t t k c a l . s e l e c t i o n
9 pr in t ( 'The s e l e c t e d date i s : ' , x )

10

11 root = tk .Tk( )
12 root . t i t l e ( 'Ttk Calendar ' )
13 t tk . Button ( root , t ex t= 'Get Date ' , command=get da t e ) . g r i d ( s t i c k y=tk .W)
14 # f i r s tweekday : 0 = monday , 1 = tuesday ; 6 = sunday
15 t t k c a l = t tkca l enda r . Calendar ( f i r s tweekday=6)
16 t t k c a l . g r i d ( )
17

18 root . mainloop ( )
19

20 i f name == ” main ” :
21 don ( )
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Lesson 117. Colors
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Lesson 118. Message that Self Destructs about 2 Seconds

1 import t k i n t e r as tk
2 root = tk .Tk( )
3 prompt = 'Timer i s Done '
4 f ont1 = ”He lve t i ca 80 bold i t a l i c ”
5 l a b e l 1 = tk . Label ( root , t ex t=prompt , width=len ( prompt ) , f ont=font1 )
6 l a b e l 1 . g r i d ( )
7

8 de f c l o s e a f t e r 2 s ( ) :
9 root . des t roy ( )

10

11 root . a f t e r (2000 , c l o s e a f t e r 2 s )
12 root . mainloop ( )

Written as a class, this algorithm looks like this:

1 c l a s s MyMessage ( tk . Topleve l ) :
2 ””” Show a message that s e l f d e s t r u c t s ”””
3 de f i n i t ( s e l f , win , message , time ) :
4 ””” Show a message that s e l f d e s t r u c t s
5

6 Parameters :
7 win ( t k i n t e r window ) : the window a s s o c i a t ed with top l e v e l
8 message ( s t r i n g ) : the message
9 time ( i n t e g e r ) : time in seconds f o r the message to d i sp l ay

10 ”””
11 super ( ) . i n i t (win , bg= ' powder blue ' )
12 s e l f . g r i d ( )
13 prompt = message
14 f ont1 = ”He lve t i ca 80 bold i t a l i c ”
15 l a b e l 1 = tk . Label ( s e l f , t ex t=prompt , width=len ( prompt ) , f ont=font1 )
16 l a b e l 1 . g r i d ( padx=30, pady=30)
17 s e l f . a f t e r ( time ∗1000 , s e l f . c l o s e w in )
18

19 de f c l o s e w in ( s e l f ) :
20 s e l f . de s t roy ( )
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Part XIII: Images in Python
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Lesson 119. Summary

The 4 essential steps are

1. Import the python image library classes (line 2)
2. Open an image (line 8)
3. Resize the image as needed (line 10); this can also be done with the .thumbnail

method.
4. Convert the image so that python can use it (line 11)
5. Reference the image anywhere that tkinter expects an image; note that the image

must be saved as an attribute of the tk object (line 13)

1 import t k i n t e r as tk
2 from PIL import ImageTk , Image
3

4 de f t a l k ( ) :
5 pr in t ( ' hi the re ' )
6

7 root = tk .Tk( )
8 image = Image . open ( ”temp . png” )
9 new s i ze = in t (22 / image . s i z e [ 1 ] ∗ image . s i z e [ 0 ] ) , 22 # 22 p i x e l s high

10 image2 = image . r e s i z e ( new s ize , Image .ANTIALIAS)
11 image3= ImageTk . PhotoImage ( image2 )
12 b = tk . Button ( root , t ex t=” h e l l o ” , image=image3 , command=ta l k )
13 b . image = image
14 b . g r id ( padx=15, pady=15)
15 tk . Button ( root , t ex t= 'Text Button ' ) . g r i d ( )
16 root . mainloop ( )

182



Lesson 120. About Images in Python

There are three ways to use images in python

1. Display two color images (.xbm format) using the BitmapImage class.

2. Display full color images (.gif, .pgm, or .ppm) using the PhotoImage class.

3. Using image processing software (ImageMagick or PIL) to convert your image and
then use options 1 or 2.

This article compares .gif to .png and .png.

.pgm: The acronym pgm stands for portable greymap”. A .pgm file has a text-based image
format for greyscale images.

.ppm: The PPM (portable pix map) image format is encoded in text that is human read-
able. See this article.

183

https://www.sitepoint.com/gif-jpg-png-whats-difference/
https://www.cs.swarthmore.edu/~soni/cs35/f13/Labs/extras/01/ppm_info.html


Lesson 121. Solving the tk Image Problem

The problem is that a tk image, when used in a function/class/etc. will not appear due to
a bug in tk. The solution is to save the image as an attribute called image as follows:

my_widget.image = image_object

See this effbot article for more information.
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Lesson 122. About PIL

The current version is called pillow; a fork of pil.

PIL allows you to process images with python.

This webpage presents a tutorial.

from PIL import Image

myimage = Image.open(filename)

myimage.load()

myimage.format # file type

myimage.size # pixel size

myimage.mode # color model

from PIL import Image, ImageFilter

im = Image.open("lena.png")

im.thumbnail(size)

im.save(fname)

im.show()

im2 = im.filter(ImageFilter.CONTOUR)

im2.save('lena_contour' + '.jgp')

im2.show()

122.1 Filters

Original image
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The contour filter

The emboss filter
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Table 122.1: Image enhancement filters

Filter Explanation

BLUR
CONTOUR
DETAIL
EDGE ENHANCE
EDGE ENHANCE MORE
EMBOSS
FIND EDGES
SMOOTH
SMOOTH MORE
SHARPEN

122.2 Thumbnails (making images of given size)



Lesson 123. Example: Resizing (upwards)

The problem is that the image is not filling the window. The solution is to resize the image.

1 from PIL import Image
2 import numpy as np
3

4 mp = Image . open ( ' mypicture . jpg ' )
5 mp. show ( )
6

7 s = np . array (mp. s i z e )
8 s i z e = s ∗ 500/min (mp. s i z e )
9 s i z e = tup l e ( s i z e . astype ( i n t ) )

10

11 m2. show (mp. r e s i z e ( s i z e ) )

In line 7, the size method returns a tuple with the current image size.

Lines 7 to 9 use numpy’s vector operations to convert the image size to have a minimum
dimension of 500. Line 9 converts the numpy array to integer and then to a tuple.

Line 11 resizes the image and then displays it.
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Lesson 124. ImageMagick

imagemagick.org

December 28, 2018. I reinstall using
brew install imagemagick

I had to screw around with brew to get it to link. The command that worked was
brew link --overwrite imagemagick

Then, I tested using a file on desktop
magick 1.jpg 1.png

This converted 1.jpg to a .png file.

To resize into a 500 x 500 box while maintaining the aspect ratio, I used
convert 1.jpg -resize 500x500 1r.gif

I had a lot of trouble with pdf conversions due to a black background. I had to add the
- flatten option. The command I used was
magick convert -density 300 -quality 100 -flatten 1fb.pdf 1fb.jpg

Use the convert method; link

Update: 2017-11-08: Need to update to version 7 and use magick or magick-script.

Update: add the -append parameter to make multiple pages of images stack onto one
page.

1 a = subproces s . run ( [ ' convert ' , '−dens i ty ' , ' 500 ' , '−append ' , pd f in , jpg out ] )

The ImageMagick command-line tools exit with a status of 0 if no problems occur. If
problems do occur, the exit status is 1.

124.1 What Works

sp = subprocess.run(['convert', '-density', '300', 'dog.pdf', 'dog.jpg'])

# sp.returncode = 0 for success in file conversion
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The terminal command follows.

convert -density 5000 stand.pdf output.png

The density setting controls the image quality.

The python command follows.

subprocess.run(['convert', '-density', '4000',

'stand.pdf','1.png'])

124.2 Quality from a pdf

June 20, 2019: The following worked well:
convert -density 300 1.pdf -quality 100 -flatten 1.png

Notes: need to trial and error convert; man helps some; -flatten is needed or background
will be black–go figure?

So far, here are the rules I’ve developed. Convert the pdf to a jpg (not png). Set
-quality 90 . Try supersampling. A density of about 200 seems to work fine.



Lesson 125. MWE

see /Users/donaldelger/SpyderProjects/CourseBuilderR1/image.py
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Part XIV: LATEX Scripting
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Lesson 126. Overview

I write a LATEX file and use this syntax [[topic]] to indicate where I want to insert text
into the file.

Next, I run a python script that executes the following steps.

1. Read the LATEX file into a string variable sv

2. Replace the curly brackets and the [[topic]] using the string replace method four
times. Some examples are

sv.replace('{', '{{')

sv.replace('[[', '{')

3. In python, build a dictionary dict that holds the keywords and replacement strings.

4. Run the string format method and pass this to the dictionary as follows.
sv.format(**dict)

5. Write the string to a new file.
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Part XV: Packages
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Lesson 127. pint

units and dimensions

To install, I used conda install -c conda-forge pint

An example

1 import p int
2 ur = pint . Uni tReg i s t ry ( )
3 uf = ' /Users / dona lde l g e r / SpyderPro ject s /CourseBuilderR1/dbases / u n i t s f o r p i n t . txt '
4 ur . l o a d d e f i n i t i o n s ( uf )
5

6 energy per vo lume = 32∗ur .MJ/ur .L
7 area = 5.4∗ ur .m∗∗2
8 area . i t o b a s e u n i t s ( )
9 pr in t ( ' area : ' , area )

10 c o e f f i c i e n t d r a g = 0.32
11 dens i ty = 1.2∗ ur . kg/ur .m∗∗3
12 speed = 30 ∗ ur .m / ur . s
13 e n g i n e e f f i c i e n c y = 0 .4
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Lesson 128. CoolProp

Fluid properties

To install, I used pip install CoolProp . The conda install did not work.

An example is:

1 from CoolProp . CoolProp import PropsSI
2

3 # Ask CoolProp water ' s heat capac i ty at 275 .15 K (2C)
4 # and common Earth p r e s su r e 101325 Pa
5 hea t capac i ty = PropsSI ( 'C ' , 'T ' , 275 . 15 , 'P ' ,101325 , 'INCOMP: : Water ' )
6 #return 4182.587592215201
7 pr in t ( hea t capac i ty )
8

9 #Ask CoolProp water ' s mass dens i ty and v i s c o s i t y with same cond i t i on s
10 dens i ty = PropsSI ( 'D ' , 'T ' , 275 . 15 , 'P ' ,101325 , 'INCOMP: : Water ' )
11 #return 1003.076063639064
12 pr in t ( dens i ty )
13

14 v i s c o s i t y = PropsSI ( 'V ' , 'T ' , 275 . 15 , 'P ' ,101325 , 'INCOMP: : Water ' )
15 #return 0.0016507819947969723
16 pr in t ( v i s c o s i t y )
17

18 kv i s c o s i t y = v i s c o s i t y / dens i ty
19 pr in t ( k v i s c o s i t y )

To find saturation temperature or pressure, use a quality of 1.0 and one more property.
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Lesson 129. Clipboard

Ref.

import clipboard

clipboard.copy("abc") # now the clipboard content will be string "abc"

text = clipboard.paste() # text will have the content of clipboard

197

https://pypi.python.org/pypi/clipboard/0.0.4


Lesson 130. Calendar

1 import ca l endar
2 yy = 2018 ; mm = 9
3 pr in t ( ca l endar . month(yy , mm)) # d i sp l ay month
4 pr in t ( ca l endar . ca l endar (2018) ) # d i sp l ay year

Note: in terminal, the command cal displays a calendar.
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Lesson 131. Nomenclature

An attribute is the value of a property; a “property of a property.”
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Lesson 132. Procedural; Functional ;OOP

Procedural versus object oriented.

A component provides services to client (users) through its interfaces.

Zelle John Zelle. Python Programming: An Introduction to Computer Science. 2nd Edition.
Franklin, Beedle & Associates Inc., 2010 asserts that the method of solving a hard problem
is to break the problem down into a set of cooperating classes. The reason is that this
approach reduces the complexity; allows the coder to focus on one thing at a time.

What does the class need to know?
What does the class need to be able to do?

The attributes of an object are the methods and parameters (instance variables).
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Lesson 133. Testing

p. 217. Eric Matthes: Python Crash Course

Testing proves that your code works

A unit test verifies that one specific aspect of function’s behavior works.

A test case is collection of unit tests that span all the possibilities.
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Lesson 134. Version Control and GIT

This book on git explains everything very well. My top learning resource. I downloaded
this book as a pdf file.

This article explains the main concepts of version control.

This tutorial was easy for me as a beginner.

p. 505, Eric Matthes: Python Crash Course
p. 471, Eric Matthes: Python Crash Course
p. 213, Cory Althoff: The Self Taught Programmer

Version control software give you the chance to store a copy of your program when your
program is in a working state.

A version of your program that is saved is called a commit.

134.1 What, Why, Nomenclature

Version control is the management of information stored on a computer–e.g., documents,
programs, web sites, and so on—in which changed files are identified and stored.

There are several common VCS, the two most common are

• SVN or Subversion which is described here
• GIT

Benefits of VC

1. Backup.
2. Synchronization.
3. Undo: both short-term and long term
4. Track Changes
5. Track Ownership
6. Try Something Out; both short term and long term (branch)

The nomenclature:

Basic Setup
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Repository (repo): The database storing the files. Server: The computer storing the repo.
Client: The computer connecting to the repo. Working Set/Working Copy: Your local
directory of files, where you make changes. Trunk/Main: The primary location for code in
the repo. Think of code as a family tree — the trunk is the main line.

Basic Actions

Add: Put a file into the repo for the first time, i.e. begin tracking it with Version Control.
Revision: What version a file is on (v1, v2, v3, etc.). Head: The latest revision in the repo.
Check out: Download a file from the repo. Check in: Upload a file to the repository (if it
has changed). The file gets a new revision number, and people can “check out” the latest
one. Checkin Message: A short message describing what was changed. Changelog/History:
A list of changes made to a file since it was created. Update/Sync: Synchronize your files
with the latest from the repository. This lets you grab the latest revisions of all files.
Revert: Throw away your local changes and reload the latest version from the repository.
Advanced Actions

Branch: Create a separate copy of a file/folder for private use (bug fixing, testing, etc).
Branch is both a verb (“branch the code”) and a noun (“Which branch is it in?”). Dif-
f/Change/Delta: Finding the differences between two files. Useful for seeing what changed
between revisions. Merge (or patch): Apply the changes from one file to another, to bring
it up-to-date. For example, you can merge features from one branch into another. (At Mi-
crosoft this was called Reverse Integrate and Forward Integrate) Conflict: When pending
changes to a file contradict each other (both changes cannot be applied). Resolve: Fixing
the changes that contradict each other and checking in the correct version. Locking: Tak-
ing control of a file so nobody else can edit it until you unlock it. Some version control
systems use this to avoid conflicts. Breaking the lock: Forcibly unlocking a file so you can
edit it. It may be needed if someone locks a file and goes on vacation (or “calls in sick”
the day Halo 3 comes out). Check out for edit: Checking out an “editable” version of a
file. Some VCSes have editable files by default, others require an explicit command. And
a typical scenario goes like this:

Alice adds a file (list.txt) to the repository. She checks it out, makes a change (puts “milk”
on the list), and checks it back in with a checkin message (“Added required item.”). The
next morning, Bob updates his local working set and sees the latest revision of list.txt,
which contains “milk”. He can browse the changelog or diff to see that Alice put “milk”
the day before.

134.2 How To

First, install git and create a GitHub account; see web for details. Once the software is
installed
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Step 1: Make a root folder XY Z. Add one or more files.

Step 2: Create Repo. In terminal, navigate to root to the root folder and initialize a git
repo by typing
git init

Step 3: Stage. In terminal type, git add <filename> .

Step 4: ???Make a .gitignore file in folder XY Z. The contexts of the file are: __pycache__/



Lesson 135. Nomenclature for Paths and Files

pathname = mac name for the full path
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Lesson 136. Commands

git config user.name : Show the Git username

git config --list : List all the configuration information
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Lesson 137. Fluid Properties

CoolProp is a C++ library that finds fluids properties and more.

PropsSI is a the python module for running CoolProp

1 # Import the PropsSI func t i on
2 In [ 1 ] : from CoolProp . CoolProp import PropsSI
3

4 # Saturat ion temperature o f Water at 1 atm in K
5 In [ 2 ] : PropsSI ( 'T ' , 'P ' ,101325 , 'Q ' , 0 , 'Water ' )
6 Out [ 2 ] : 373.1242958476844

Names of properties
mass density: D, DMASS, Dmass
pressure P
mass vapor quality: Q
viscosity: V, viscosity
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Lesson 138. Solving One Equation

When an equation cannot be solved by algebra, there are a variety of techniques ...

1 from sc ipy . opt imize import f s o l v e
2

3 de f my f ( x ) :
4 r e turn x∗∗3 − 27 .01
5

6 pr in t ( f s o l v e (my f , 2 ) )
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Lesson 139. Types of Paths

There are three kinds of paths

1. Absolute: perhaps the best
2. Root Relative; relative to the root folder of site or project
3. Document Relative: avoid; hard to manage; can break

139.1 Latex: Root and Absolute Combination

see newcommand* versus newcommand
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Lesson 140. Solving a Set of Nonlinear Equations

The following example shows how to solve three equations.
Source: /Users/donaldelger/Documents/*A_C/BookCourses/FluidMechanics/tasks/_jupyter/15.py

1 from sc ipy . opt imize import f s o l v e
2

3

4 de f equat ions (p , ∗ args ) :
5 ””” Find the f o r c e to hold a ho r i z on t a l nozz l e ”””
6 V1 , V2 , Fx = p # parameters to be s o l v e f o r
7 rho , A1 , A2 , p1 = args
8 mdot = rho ∗ A1 ∗ V1
9 eq1 = p1∗A1 + Fx − mdot ∗ (V2 − V1)

10 eq2 = p1 + rho ∗ V1∗∗2/2 − rho∗V2∗∗2/2
11 eq3 = A1∗V1 − A2∗V2
12 r e turn ( eq1 , eq2 , eq3 )
13

14

15 de f p r i n t v a r s ( vars ) :
16 ””” p r in t va lue s v a r i a b l e s c r ea ted with p int ;
17 vars = a s t r i n g with v a r i a b l e s names separated by commas
18 example vars = ( 'F, m, a c c e l e r a t i o n ' )
19 ”””
20 vars = [ var . s t r i p ( ) f o r var in vars . s p l i t ( ' , ' ) ]
21 f o r var in vars :
22 pr in t ( ' {} : {} ' . format ( var , eva l ( var ) ) )
23

24

25 # Spec i f y the input parameters
26 rho , A1 , A2 , p1 = (
27 1000 , 50e−4, 10e−4, 2 .5∗100 e3 )
28 inputs = rho , A1 , A2 , p1
29

30

31 # Spec i f y i n i t i a l guess va lue s o f V1 ,V2 , p2 , Fx , Fy
32 gue s s va l u e s = (1 , 10 , 1000 . )
33

34 # Solve f o r the unknown parameters
35 V1 , V2 , Fx = f s o l v e ( equat ions , gue s s va lue s , a rgs=inputs )
36

37 # Print the r e s u l t s
38 pr in t ( ' \nInput Parameters ' )
39 p r i n t v a r s ( ' rho , A1 , A2 , p1 ' )
40 pr in t ( ' \nOutput Parameters ' )
41 p r i n t v a r s ( 'V1 , V2 , Fx ' )

Listing 140.1: Example: Solving Three Equations

To solve a set of nonlinear equation, use fsolve from scipy.optimize
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Ref: search for fsolve

https://sites.google.com/a/aims-senegal.org/scipy/roots-finding-numerical-integrations-and-differential-equations


Lesson 141. Random Numbers

Random Module

Numpy Random

1 import random
2 import numpy as np
3

4 random . sample ( s e t ( ' abcde ' )
5

6 myset = np . around (np . random . uniform (0 , 2∗377 , 4 ) , dec imals=0)
7

8 ans = [ 8 , 69 , 43 , 38 , 23 ]
9 random . s h u f f l e ( ans )
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http://www.pythonforbeginners.com/random/how-to-use-the-random-module-in-python
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Lesson 142. Permutations and Combinations
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Lesson 143. Python Modules and Packages

Some references are:

realpython.com

stackoverflow.com

tutorialspoint

another tutorial ...
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https://realpython.com/python-modules-packages/
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Lesson 144. Exceptions

144.1 Raise an Exception

To raise an exception:
raise ValueError('A very specific bad thing happened.')

stackoverflow
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Part XVIII: Useful Packages
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Lesson 145. Roman Numeral Converter

help(roman)

pypi site

import roman

fromRoman(s) convert Roman numeral to integer

toRoman(n) convert integer to Roman numeral
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Lesson 146. Python files

To find source code for python functions: stack overflow

To find the location of python modules: stack overflow
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https://stackoverflow.com/questions/8608587/finding-the-source-code-for-built-in-python-functions
https://stackoverflow.com/questions/269795/how-do-i-find-the-location-of-python-module-sources


Lesson 147. Package: Build Your Own

147.1 Rationale for Using a Package

Using a package makes organization of files easier. Organization saves times, ....

programiz.com says the following:

We don’t usually store all of our files in our computer in the same location. We
use a well-organized hierarchy of directories for easier access.

Similar files are kept in the same directory, for example, we may keep all the
songs in the ”music” directory. Analogous to this, Python has packages for
directories and modules for files.

As our application program grows larger in size with a lot of modules, we place
similar modules in one package and different modules in different packages.
This makes a project (program) easy to manage and conceptually clear.

Similar, as a directory can contain sub-directories and files, a Python package
can have sub-packages and modules.

A directory must contain a file named __init__.py in order for Python to
consider it as a package. This file can be left empty but we generally place the
initialization code for that package in this file.

147.2 Modular Programming

This quote is from ref :

Modular programming refers to the process of breaking a large, unwieldy pro-
gramming task into separate, smaller, more manageable subtasks or modules.
Individual modules can then be cobbled together like building blocks to create
a larger application.

There are several advantages to modularizing code in a large application:

Simplicity: Rather than focusing on the entire problem at hand, a module typ-
ically focuses on one relatively small portion of the problem. If you’re working
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on a single module, you’ll have a smaller problem domain to wrap your head
around. This makes development easier and less error-prone.

Maintainability: Modules are typically designed so that they enforce logical
boundaries between different problem domains. If modules are written in a way
that minimizes interdependency, there is decreased likelihood that modifications
to a single module will have an impact on other parts of the program. (You
may even be able to make changes to a module without having any knowledge
of the application outside that module.) This makes it more viable for a team
of many programmers to work collaboratively on a large application.

Reusability: Functionality defined in a single module can be easily reused
(through an appropriately defined interface) by other parts of the application.
This eliminates the need to recreate duplicate code.

Scoping: Modules typically define a separate namespace, which helps avoid
collisions between identifiers in different areas of a program. (One of the tenets
in the Zen of Python is Namespaces are one honking great idea—let’s do more
of those!)

Functions, modules and packages are all constructs in Python that promote
code modularization.

147.3 Package

Any Python file is a module, its name being the file’s base name without the .py extension.
A package is a collection of Python modules: while a module is a single Python file, a
package is a directory of Python modules containing an additional __init__.py file, to
distinguish a package from a directory that just happens to contain a bunch of Python
scripts. Packages can be nested to any depth, provided that the corresponding directories
contain their own __init__.py file.

ref: module versus package

147.4 How to Set up a Package

Minimalist Tutorial

Hitchhikers Guide

uoftcoders

See ref .

https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package
https://python-packaging.readthedocs.io/en/latest/minimal.html
https://the-hitchhikers-guide-to-packaging.readthedocs.io/en/latest/quickstart.html
https://uoftcoders.github.io/studyGroup/lessons/python/packages/lesson/
https://realpython.com/python-modules-packages/


Lesson 148. Namespaces and scope

Here programiz.com explains a namespace.

A name, aka an identifier, is a name for an object.

A namespace is a set or collection of names.
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Lesson 149. Logging

ref

https://realpython.com/python-logging/

a. Get the Name of the module

1 l o gg e r= logg ing . getLogger ( ' HoshiLogger ' )
2 l o gg ing . bas i cCon f i g ( l e v e l=logg ing . INFO)
3 l o gg e r . i n f o ( ' you have reached l i n e 38 ' )

b. Format the Log Message

Method 1: Use the basicConfig(**kwargs) method to configure the format of the logging:

1 l o gg ing . bas i cCon f i g ( format= '%(asct ime ) s − %(message ) s '
2 , datefmt= '%d−%b−%y %H:%M:%S ' )

This logging message:

INFO (02/03/19, 06:19, line 38, log1): You need to take a break from coding, dude.

was printed out which this code:

1 l o gg e r = logg ing . getLogger ( name )
2 l o gg ing . bas i cCon f i g ( format= '%(levelname ) s (%( asct ime ) s , l i n e %( l i n eno )d ,
3 %(module ) s ) : %(message ) s ' , l e v e l=logg ing . INFO, datefmt= '%m/%d/%y , %I :%M' )
4 l o gg e r . i n f o ( 'You need to take a break from coding , dude . ' )

c. Set up a Module for Logging

Fig. 149.1 shows how to set up a module for logging.
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Figure 149.1: Setting up a module for logging

d. Using Logging in Multiple Modules

ref

The recommended way to setup logging is to not define any handlers nor logging levels
into the modules, but define all the configuration—i.e., the handlers—in the main file ref .

https://stackoverflow.com/questions/40495083/using-python-logging-from-multiple-modules-with-writing-to-a-file-and-rotatingfi
https://stackoverflow.com/questions/40495083/using-python-logging-from-multiple-modules-with-writing-to-a-file-and-rotatingfi
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