
Contents

Contents 1

I The Python Language 14

1 Vocabulary 15

2 Loading Modules 16
2.1 Module Path Needs to be Specified . 16

3 Simple Math 17
3.1 Mean . 17

4 The String 18
4.1 Slice . 18
4.2 Capitalize or Lower Case . 18
4.3 Split a string . 18
4.4 String to List: Split at LineBreaks . 19
4.5 Search and Replace . 19
4.6 Count Occurrences . 19
4.7 String to Numbers . 19
4.8 Execute a Statement written as a String . 19
4.9 Remove Leading and Trailing Characters: Esp. Whitespace 19
4.10 Check if String is Empty . 20

5 The String Format Method 21
5.1 Format Specifier . 21
5.2 Older ... 21
5.3 Numbers and Currency . 21
5.4 Values and Key=Value Information . 21
5.5 Use a Dictionary . 22

1

CONTENTS 2

6 The List 23
6.1 Remove or Pop item . 23
6.2 Add Item at Start or Before an Index . 23
6.3 Convert Between Tuples and Lists . 23
6.4 The List Comprehension . 24
6.5 List: integers to float . 24

7 The Dictionary 25
7.1 Definition . 25
7.2 Creating a Dictionary . 25
7.3 Remove an Item . 25
7.4 Getting a list of the keys . 25
7.5 Dictionary . 25
7.6 Dictionary from Two Lists . 26
7.7 Reverse Lookup . 26

8 Copy and Deep Copy 27

9 Loops 28
9.1 Using a Dictionary . 28
9.2 List and Counter: Enumerate . 28
9.3 List Comprehension . 28

10 Logic, Conditionals, etc. 29

11 Function 31
11.1 *arg and **kwargs . 31
11.2 Passing a Dictionary to a Function . 32

12 Lambda (Anonymous) Function 33

13 File Read and Write 34
13.1 Read a File . 34
13.2 Read a File by Line . 34
13.3 Modes . 34
13.4 Stripping Whitespace . 35
13.5 Writing a File . 36

14 Read Comma Separated Variable (csv) 37

15 Dump and Load Data to a File 38
15.1 JSON . 38

CONTENTS 3

15.2 Pickle (Binary) . 38

16 Work with Times and Dates 39
16.1 Getting Started . 39
16.2 Delta Time . 39

a Speed: Minutes/Mile . 39
b Time Between Two Dates . 39

16.3 String to DateTime . 40
16.4 DateTime to String . 40
16.5 Directives for Strings . 40
16.6 Get the ISO 8601 Date as a String . 40

17 File Operations 41
17.1 Get Folder Path . 41
17.2 Use Relative File Path . 41
17.3 Get Path + File . 41
17.4 Split Path into Extension plus Other . 41
17.5 Get File Name w/o Extension . 41
17.6 Open Finder to Folder . 42
17.7 Change Directory . 42
17.8 Get the Current Working Directory . 42
17.9 Check File Modification Date . 42
17.10Open a File . 42
17.11Check for File or Folder . 43
17.12Write New File + Create All Folders in Path 43
17.13Make a Folder . 43
17.14Copy a File, Folder, Directory Tree . 43
17.15Open a File or Folder . 43
17.16Rename a File or Folder . 43
17.17Remove a Directory Tree . 44
17.18List Files in a Directory . 44
17.19List Files in Dir + SubDirs . 44
17.20Building Absolute Path . 44
17.21Absolute File Path . 45
17.22Relative File Path . 45
17.23Remove a File, Folder, or Directory . 45

18 Comparison Operators 46
18.1 Sorting . 46

19 Exception Handling: Try and Except 47

CONTENTS 4

20 Logging 48
20.1 Concepts . 48
20.2 Minimum Worked Example . 48
20.3 Setting the Logging Configuration . 48
20.4 Customizing the Logging Message . 49
20.5 Capturing Exceptions . 49

21 Useful Things 50
21.1 Read a String (Speech) . 50
21.2 Compile a LATEX file . 50

22 Arithmetic Operators 51

II Standard Modules 52

23 Math 53

24 Vector Operations 54

III Object Oriented Programming 55

25 Big Idea 56

26 Inheritance 57

27 Setting and Getting Attributes 58

IV Techniques for Python Programming 59

28 Timing Code: What Runs Faster? 60

29 Speaking/Talking 61

30 Docstring 62

31 Printing to the Default Printer 63

32 CSV to List 64

33 Print to File 65

CONTENTS 5

34 Regix Searches 66
34.1 Resources . 66
34.2 MWE . 66
34.3 The search Function . 67
34.4 The findall Method . 67
34.5 Example . 68
34.6 Methods for regix objects . 68
34.7 Group Extraction . 68
34.8 Named Group (Placeholder) . 69
34.9 Greedy versus NonGreedy . 69
34.10Tex Doc: Extract text between begin and end 69
34.11Summary Tables . 70

35 Binary Files 72

36 Raising Exceptions 73

37 Pretty Print 74

38 Debugging 75

39 Subprocess: Running Other Programs 76

V Updates and Ecosystem Programs: Terminal, Anaconda, . . . 77

40 Updates to Python 78

41 Terminal 79
41.1 Open a File (nondefault app) . 79
41.2 Run a Function . 79

42 Anaconda Updates 80

43 Spyder 81
43.1 Run from Spotlight . 81

44 Atom IDE 82

45 Ipython 83
45.1 Reset Variables . 83
45.2 Run a Script . 83

CONTENTS 6

46 Add a module 84

47 jupyter and jupyterlab 85
47.1 Jupyter . 85

a Images . 85
47.2 Jupyter Lab . 85

VI Numpy 86

48 Create ndarray 87
48.1 Passing Lists . 87
48.2 Random Numbers . 87

49 Basic Math 88

50 Element Wise Operations 89

51 Solving Linear Equations 90

52 Converting types of data 91

53 Random Sample 92

VII Symbolic Math: SymPy 93

54 Misc 94
54.1 Declaring Symbols . 94
54.2 Integration (Indefinite) . 94
54.3 Integration (Definite) . 94
54.4 Integration (Pretty Printing) . 95

VIII Plotting Data 96

55 Getting Started 97

56 About Plotting 99

57 Style Ticks and Tick Labels 100

58 Line Types, Colors, and Markers 101

CONTENTS 7

59 Saving a Plot 103

60 LATEX Labels 104

IX SQLite 105

61 Minimum Program 106

62 Select a Record 107

63 Insert a record 108

64 Find the Maximum of a Column 109

65 Delete a Row 110

66 Get Column Names 111

67 Get Number of Records and Last Record 112

68 Get ID of Last Row Inserted 113

69 Insert Date or Timestamp as Default 114

70 Parameterized Query 115

71 Row Dictionary 116

72 Read Table to Pandas 117

73 Read Table, Modify, Write to sqlite3 118

74 Create New Table or DataBase 119

75 Sqlite Shell 120
75.1 Copying a Table from one dbase to another 120

X Pandas 121

76 Series 122
76.1 Series to list . 122

CONTENTS 8

77 Create a DataFrame 123
77.1 From Records (rows) . 123
77.2 From numpy ndarray . 123

a Unlabeled rows and columns . 123
b Labeled Rows and Columns . 123

77.3 From dictionary . 124
77.4 From Excel File . 124
77.5 From sqlite3 DataBase . 124

78 Cells 126
78.1 Given a cell value, Get the row . 126

79 Column Operations 127
79.1 Get One or More Columns . 127
79.2 Column to List . 127
79.3 List Column Names . 127
79.4 Get the Index . 127
79.5 Sum a column . 127
79.6 Divide values in one column by another column 127
79.7 Delete a Column . 128
79.8 Add a Column . 128
79.9 Sort a df by One Column . 128
79.10Specify The Order in Which the Columns Appear 128

80 Number of Rows/Columns in a df 129

81 Work with Rows 130
81.1 Iterate over Rows in a Dataframe . 130
81.2 Add a row to a DataFrame . 130
81.3 Select Certain Rows . 130
81.4 Select One Row; More that one row . 130
81.5 Select Row(s) based on Partial String Search 130
81.6 Select Rows based on a List . 131
81.7 Reset the Index . 131

82 Convert a Series to a Dictionary 132

83 Deep Copy 133

84 Dropping Rows and Columns 134

85 Join Dataframes 135

CONTENTS 9

86 DataFrame to SQL 136

87 DataFrame to other formats 137
87.1 DataFrame to Table . 137

a Working Example . 137
b Background . 137

87.2 DataFrame to csv . 138

XI Tkinter 139

88 Big Picture: How to Use TkInter 140

89 Label Widget 141

90 Button 142
90.1 Use Image . 142

91 Text Widget 144
91.1 Get Text . 145

92 ScrolledText Widget 146

93 Frame 147

94 LabelFrame 148

95 Toplevel 149

96 Entry Widget 150
96.1 Updating an Entry Box . 150
96.2 Scrolling Entry Widget . 151

97 Combobox 152

98 simpledialog 153
98.1 Example . 153
98.2 Parameters . 153

99 Checkbutton Widget 154
99.1 Example . 154

100Listbox Widget 156

CONTENTS 10

101Canvas 157
101.1Line . 157
101.2Image . 158

102Interact with User: Dialog, Message, File 159
102.1Get a New File Name From User . 160

103Open/Create a File or Folder 161
103.1Open/Create a Folder . 161

104Notebook Widget (Tabbed) 162

105Message Box 163
105.1Warning Message Box . 163
105.2Yes/No Messagebox . 163
105.3Box Types . 164

106The filedialog module 165
106.1Overview of the 3 module functions . 165
106.2askdirectory . 165

107Entry box, Get Data on Return 166

108Grid 167

109Text Box with Scrolling 168

110Passing Variables Using Lambda 169

111Event Binding 170
111.1Bind to Main Window . 170

112Removing and Hiding Widgets 172

113Images 173

114Getting Widgets (Images) to Cycle 174

115Power User Methods 175
115.1Making Widgets Stretchable; Controlling widget size 175
115.2Finding/Changing the Attributes of Widget 176
115.3Displaying a Message for 5 seconds (or 2) 176

116Calendar 177

CONTENTS 11

117Colors 178

XII GUI CookBook 179

118Message that Self Destructs about 2 Seconds 180

XIII Images in Python 181

119Summary 182

120About Images in Python 183

121Solving the tk Image Problem 184

122About PIL 185
122.1Filters . 185
122.2Thumbnails (making images of given size) 187

123Example: Resizing (upwards) 188

124ImageMagick 189
124.1What Works . 189
124.2Quality from a pdf . 190

125MWE 191

XIV LATEX Scripting 192

126Overview 193

XV Packages 194

127pint 195

128CoolProp 196

129Clipboard 197

130Calendar 198

CONTENTS 12

XVI How to Program 199

131Nomenclature 200

132Procedural; Functional ;OOP 201

133Testing 202

134Version Control and GIT 203
134.1What, Why, Nomenclature . 203
134.2How To . 204

135Nomenclature for Paths and Files 206

136Commands 207

XVII Engineering Stuff 208

137Fluid Properties 209

138Solving One Equation 210

139Types of Paths 211
139.1Latex: Root and Absolute Combination . 211

140Solving a Set of Nonlinear Equations 212

141Random Numbers 214

142Permutations and Combinations 215

Bibliography 216

143Python Modules and Packages 217

144Exceptions 218
144.1Raise an Exception . 218

XVIII Useful Packages 219

145Roman Numeral Converter 220

CONTENTS 13

XIX Python Connections 221

146Python files 222

147Package: Build Your Own 223
147.1Rationale for Using a Package . 223
147.2Modular Programming . 223
147.3Package . 224
147.4How to Set up a Package . 224

148Namespaces and scope 225

149Logging 226
a Get the Name of the module . 226
b Format the Log Message . 226
c Set up a Module for Logging . 226
d Using Logging in Multiple Modules 227

Bibliography 228

Index 229

Part I: The Python Language

14

Lesson 1. Vocabulary

A module is file that contains python code. On your hard drive, this is saved as myfile.py.

15

Lesson 2. Loading Modules

2.1 Module Path Needs to be Specified

ref

1 import t k i n t e r as tk
2 import sys
3

4 # append the f u l l path o f the f o l d e r
5 sys . path . append (' /Users / dona lde l g e r / SpyderPro ject s / Re f l e c t i o n / code ')
6

7 import r e f l e c t
8

9 i f name == ' main ' :
10 root = tk .Tk()
11 r1 = r e f l e c t . Re f l e c t (root)
12 r1 . g r i d (padx=15, pady=15)
13 root . geometry ('+20+20 ')
14 root . mainloop ()
15

16 \ chapter {Round}
17

18 \ subs e c t i on {Round to a Sp e c i f i e d Number o f D i g i t s }
19

20

21 \begin { l cverbat im }
22 In [] : round (129 .4375)
23 Out [] : 129
24

25 In [] : round (129 .4375 , 2)
26 Out [] : 129 .44
27 \end{ l cverbat im }
28

29

30 \ cverb ! round (number [, n d i g i t s]) ! Round to nd i g i t s (d e f au l t =0) d i g i t s a f t e r the decimal po int . The 0 .5 i s rounded up or down to g ive an even number .
31

32

33

34 \ subs e c t i on {Round Up to Nearest Whole Number}
35

36 The code
37 \begin {codeA}{}{Python}
38 import math
39 va l = math . c e i l (2 . 4)

will set val = 2 . Note that the type of val is float, not integer. The method math.ceil(x)

returns the smallest integer value that is greater than or equal to x.

16

https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path

Lesson 3. Simple Math

3.1 Mean

1 import numpy as np
2 gap = [3 . 2 7 , 3 . 148 , 3 . 230 , 3 . 182 , 3 . 257 , 3 . 195 , 3 . 262 , 3 . 244 , 3 . 161 , 3 . 222 ,
3 3 . 24 , 3 . 2 0 7]
4 pr in t (np .mean(gap))

1 l i s t 1 = [2 . 4 , 7 . 6 , 9 . 3]
2 mean1 = sum(l i s t 1) / f l o a t (l en (l i s t 1))

17

Lesson 4. The String

4.1 Slice

This Digital Oceans article explain how to slice a string.

To include the front or back end of a string, omit one of the numbers is the string[n:n]

syntax.

Example. print(mystr[:10]) prints the first 10 characters.

Example: print(mystr[10:]) prints from character 10 to the end.

4.2 Capitalize or Lower Case

1 ms = ' h e l l o '
2

3 ms . t i t l e () # re tu rn s He l lo
4 ms . c a p i t a l i z e () # re tu rn s He l lo
5 ms . upper () # re tu rn s HELLO
6 ms [: 1] . upper () + ms [1 :] # re tu rn s He l lo

4.3 Split a string

Example: Splitting a file name into parts

>>> t = '10t.jpg'

>>> t.split('.')

['10t', 'jpg']

Example: Splitting a sentence into words

>>> t = 'the big dog ran fast'

>>> t.split()

['the', 'big', 'dog', 'ran', 'fast']

18

https://www.digitalocean.com/community/tutorials/how-to-index-and-slice-strings-in-python-3

CHAPTER 4. THE STRING 19

4.4 String to List: Split at LineBreaks

tutorialspoint

Ref.

1 s t r . s p l i t l i n e s (True) # Inc lude \n
2 s t r . s p l i t l i n e s () # Exclude \n

4.5 Search and Replace

Example. If a = '1:2,3' , then a.replace(':', ", ") gives the string '1, 2, 3' .

The syntax is mystr.replace(old, new[, max]) . If max is omitted, all instances of the
string are replaced. If max is present, then up to max instances are replaced.

4.6 Count Occurrences

4.7 String to Numbers

eval(sting)

1 >>> a = ' (1 , 2 , 3) '
2 >>> eva l (a)
3 (1 , 2 , 3)

4.8 Execute a Statement written as a String

exec(sting)

4.9 Remove Leading and Trailing Characters: Esp. Whitespace

mystring.strip() : remove leading and trailing whitespace

mystring.strip('2') : remove leading and trailing 2s

mystring.lstrip() : remove leading whitespace

mystring.rstrip() : remove trailing whitespace

The website tutorialspoint describes the strip() method.

http://www.tutorialspoint.com/python/string_splitlines.htm
https://stackoverflow.com/questions/24237524/how-to-split-a-python-string-on-new-line-characters
http://www.tutorialspoint.com/python/string_strip.htm

CHAPTER 4. THE STRING 20

The website datascience describes the strip(), lstrip(), and the rstrip() methods.

4.10 Check if String is Empty

If you know that your variable is a string, then use
if not string_var: .

If your variable could also be some other type, then use
if myString == "":

http://www.datasciencemadesimple.com/remove-spaces-in-python/

Lesson 5. The String Format Method

5.1 Format Specifier

:xx.xx see table for all the possible x values

Figure 5.1

5.2 Older ...

resource
euro resource

The SFM is way to insert data into a string of characters so that the resulting string
effectively communicates.

5.3 Numbers and Currency

'{:.2f}'.format(3.141592653589793) gives 3.14

To print $1,234.5, use the command '${:,.2f}'.format(1234.5)

1 power = 170935020100
2 pr in t (' power i s { : . 4 e} ' . format (power))
3

4 # output : power i s 1 .7094 e+11

5.4 Values and Key=Value Information

The general format is
mystring.format(po, p1, p2, ... , ko = vo, k1 = v1,)

where p=parameter and k=v means that keyword=value

21

https://pyformat.info
https://www.python-course.eu/python3_formatted_output.php

CHAPTER 5. THE STRING FORMAT METHOD 22

5.5 Use a Dictionary

Example:

geopoint = {'latitude':41.123,'longitude':71.091}

print('{latitude} {longitude}'.format(**geopoint))

The structure is:

ddd = {key1:value2, key2: value2, ...}

string.format(**ddd)

Lesson 6. The List

6.1 Remove or Pop item

In: a = [1, 'dog', 2.4]

In: a.remove(1)

In: a

Out: ['dog', 2.4]

In: a.remove('dog')

In: a

Out: [2.4]

The list method pop removes the item at index i from the list while also returning the
item:

1 In [1] : m l i s t = [0 , 1 , 2 , 3]
2

3 In [2] : m l i s t . pop (2)
4 Out [2] : 2
5

6 In [3] : m l i s t
7 Out [3] : [0 , 1 , 3]

6.2 Add Item at Start or Before an Index

Use the list insert method.

Example. a.insert(0, 0.42) adds an item at the start of the listl

Example: For the list a = [0, 2.4, -9.3] , the command a.insert(1, 0.42) gives

[0, 0.42, 2.4, -9.3]

6.3 Convert Between Tuples and Lists

a = (1, 2, 3)

b = list(a)

23

CHAPTER 6. THE LIST 24

b = [1, 2, 3]

c = tuple(b)

6.4 The List Comprehension

The list comprehension is a method to construct lists without using loops; see this article;
see python for beginers

new_list = [expression(i) for i in old_list if filter(i)]

Example
squares = [x**2 for x in range(10)]

6.5 List: integers to float

1 >>> a = (1 , 2 , 3)
2 >>> [f l o a t (i) f o r i in a]
3 [1 . 0 , 2 . 0 , 3 . 0]

http://www.secnetix.de/olli/Python/list_comprehensions.hawk
http://www.pythonforbeginners.com/basics/list-comprehensions-in-python

Lesson 7. The Dictionary

7.1 Definition

A dictionary is a type of data structure that is made up of a collection or set of key and
value pairs.

For example, suppose you were calculating your monthly expenses, you might have some
data like this

Table 7.1: Expense data in units of dollars/month

Key (name of category) Value (amount of category)

utilities 106
rent 632
groceries 282

The dictionary is the type of DS that is best for storing this type of data; shows up all the
time; this is why the dictionary is super useful

7.2 Creating a Dictionary

One way is
dictionary_name = {key:value, key:value, ...}

7.3 Remove an Item

cell_dict.pop('pk')

7.4 Getting a list of the keys

book.dct.keys() Returns a list containing the keys

7.5 Dictionary

The string
"{'seq': 2, 'desc': 'good', 'a': 'dog'}"

25

CHAPTER 7. THE DICTIONARY 26

was created using

dict = {"a":"dog", "desc":"good", "seq":2}

a = str(dict)

To covert the string a back to a dictionary use the eval() command as follows:

print(eval(a)

7.6 Dictionary from Two Lists

List 1: a = [9, 'dog', 'h']

List 2: b = ['wookie', 22.4 , 'general']

Command: dict(zip(a,b))

note that zip is a built in function

Result:
{9: 'wookie', 'dog': 22.4, 'h': 'general'}

7.7 Reverse Lookup

given the value find the key: dictionary not intended for this

one approach is to build a reverse dictionary

1 r e v e r s e d i c t = {}
2 f o r (key , va lue) in my dict . i tems () :
3 r e v e r s e d i c t [va lue] = key

Lesson 8. Copy and Deep Copy

from copy import copy, deepcopy

When you assign dict2 = dict1, you are not making a copy of dict1, it results in dict2 being
just another name for dict1.

To copy the mutable types like dictionaries, use copy / deepcopy of the copy module.

ref .

27

https://stackoverflow.com/questions/2465921/how-to-copy-a-dictionary-and-only-edit-the-copy

Lesson 9. Loops

break: end a loop

continue:

9.1 Using a Dictionary

For dictionary d :

for key, value in d.items()

9.2 List and Counter: Enumerate

9.3 List Comprehension

28

Lesson 10. Logic, Conditionals, etc.

1 i f c ond i t i on :
2 [b lock o f code]

1 i f c ond i t i on :
2 [b lock o f code]
3 e l s e :
4 [b lock o f code]

The six comparison operators:

1 == !=
2 < <=
3 > >=

¡ ¡=

29

CHAPTER 10. LOGIC, CONDITIONALS, ETC. 30

Lesson 11. Function

A function is a collection of program instructions that are packaged as a unit and that do
one job. A function is also called a method, a subroutine, a routine, and a subprogram.

An argument is an input that is passed to a function.

The docstring is ...

A parameter is a piece of information that the function needs to do its job.

A positional argument is ..

A keywork argument is ...

11.1 *arg and **kwargs

*arg and **kwargs

1 de f dog (∗∗ kwargs) :
2 pr in t (kwargs , type (kwargs))
3

4 kwargs = { ' one ' : 22 , ' two ' : 33}
5 dog (∗∗ kwargs)
6

7 de f ra t (∗ args) :
8 pr in t (args , type (args))
9

10 myl i s t = [7 , ' hat ' , 9 . 4 3]
11 ra t (∗ myl i s t)

another example

1 de f dog (∗∗ kwargs) :
2 f o r k , v in kwargs . i tems () :
3 pr in t (k , v)
4

5 mydict = { ' a ' : 1 0 , 'b ' : ' ra t ' }
6 dog (a = 10 , b = ' ra t ')
7 dog (∗∗mydict)

This will print

31

CHAPTER 11. FUNCTION 32

b rat

a 10

b rat

a 10

11.2 Passing a Dictionary to a Function

Passing a dictionary and setting default values if not passed within the dictionary; very
clever. Note that the second argument to dict.pop() is the default value if the key is
not found in the dictionary.

1 de f i n i t (s e l f , master=None , ∗∗kw) :
2 ”””
3 WIDGET−SPECIFIC OPTIONS
4

5 l o c a l e , f i r s tweekday , year , month , se lectbackground ,
6 s e l e c t f o r e g r ound
7 ”””
8 # remove custom opt ions from kw be fo r e i n i t i a l i z a t i n g t tk . Frame
9 fwday = kw . pop (' f i r s tweekday ' , ca l endar .MONDAY)

10 year = kw . pop (' year ' , s e l f . datet ime . now () . year)
11 month = kw . pop ('month ' , s e l f . datet ime . now () . month)
12 l o c a l e = kw . pop (' l o c a l e ' , None)
13 s e l b g = kw . pop (' se l ec tbackground ' , '#e c f f c 4 ')
14 s e l f g = kw . pop (' s e l e c t f o r e g r ound ' , '#05640e ')

Lesson 12. Lambda (Anonymous) Function

This blog post explains the lambda function.

lambda b, c : b*c has arguments (b,c) and returns a value of b*c.

A lambda function does not need parameters. For example, this code

b = 9

k = lambda: b+4.2

print(k())

returns 13.2.

A lambda function without parameters is used by this lambda function to pass arguments
in the context of tkinter:

33

https://pythonconquerstheuniverse.wordpress.com/2011/08/29/lambda_tutorial/

Lesson 13. File Read and Write

Ref.

13.1 Read a File

with open(file_name) as file_object:

str = file_object.read()

fn = ("test.txt", "w")

fn.write("I am a test file.\n")

fn.write("Line2 ...")

fn.close()

13.2 Read a File by Line

This source states that the best way to read a file line by line is as follows

1 with open (. . .) as f :
2 f o r l i n e in f :
3 <do something with l i n e>

The command file_object.readlines() will read a text file by line.

In the following code, I strip off the white space using the rstrip() method as shown.

1 fn = (' my f i l e . txt ')
2 with open (fn) as f i l e o b j e c t :
3 t a s k l i s t = [l i n e . r s t r i p () f o r l i n e in f i l e o b j e c t . r e a d l i n e s ()]

13.3 Modes

34

http://www.pythonforbeginners.com/files/reading-and-writing-files-in-python
https://stackoverflow.com/questions/8009882/how-to-a-read-large-file-line-by-line-in-python

CHAPTER 13. FILE READ AND WRITE 35

13.4 Stripping Whitespace

CHAPTER 13. FILE READ AND WRITE 36

13.5 Writing a File

with open(fname, "w") as fobj:

fobj.write("hello world"

Lesson 14. Read Comma Separated Variable (csv)

37

Lesson 15. Dump and Load Data to a File

To serialize data is to convert a data structure to a format that is consistent with how
data is stored on the hard drive.

15.1 JSON

best approach: use dump and load

file: json1.py

1 import j son
2

3 pets = { ' cat ' : 'Tabby ' , ' dog ' : 'Hoshi ' }
4

5 # ===== dump s t r i n g (dumps and loads) ==========
6 with open (' p e t l i s t . txt ' , 'w ') as f i l e :
7 f i l e . wr i t e (j son . dumps(pets))
8

9 with open (' p e t l i s t . txt ' , ' r ') as f i l e :
10 my pets = j son . l oads (f i l e . read ())
11

12 # === dump f i l e l i k e ob j e c t (dump and load) =====
13 with open (' p e t l i s t 2 . txt ' , 'w ') as fp :
14 j s on . dump(pets , fp)
15

16 with open (' p e t l i s t 2 . txt ' , ' r ') as fp :
17 d9 = json . load (fp)

15.2 Pickle (Binary)

38

Lesson 16. Work with Times and Dates

Guru99

time vs datetime vs timestamp ...

16.1 Getting Started

Import the module (recommendation):
from datetime import datetime, timedelta

datetime.today() Create a DO for now

datetime(2016, 12, 25) Create a DO for a specified date

date1 + timedelta(days=1) : Add one day to a DO

16.2 Delta Time

datetime.timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,
weeks=0)

a. Speed: Minutes/Mile

1 import datet ime
2 d = datet ime . t imede l ta (minutes=1, seconds =40.)
3 r a t e = d / (2/9 .)
4 pr in t (r a t e)
5 # A 0 :07 : 3 0 pace

b. Time Between Two Dates

39

https://www.guru99.com/date-time-and-datetime-classes-in-python.html
https://stackoverflow.com/questions/31761047/what-difference-between-the-date-time-datetime-and-timestamp-types

CHAPTER 16. WORK WITH TIMES AND DATES 40

16.3 String to DateTime

The command
datetime.datetime.strptime('8/22/16', '%m/%d/%y')

returns a datetime object for Aug. 22, 2016. The letters strp stand for string parse.

16.4 DateTime to String

The commands

1 today = datet ime . datet ime (2016 , 12 , 6)
2 today . s t r f t ime ('Today i s the %j th day o f %Y ')

give the string Today is the '341th day of 2016'.

Line 1 creates a datetime object for 12/6/2016. Then, line 2 creates a string that uses data
from the string time object. By using the string directives any format can be created.

16.5 Directives for Strings

The table that follows lists some of the directives. More directives are described by Tuto-

rials Point

Directive Meaning

%Y year as in 2016

%y year as in 16

%m month as a 2 digit number

%B month name as in December

%b month name as in Dec

%d day of the month (00 to 31)

%e day of the month (1 to 31)

%j day of the year (0 to 365)

%a weekday name, 3 characters (Tue, Thu)

%A weekday name, spelled out (Tuesday)

16.6 Get the ISO 8601 Date as a String

1 datet ime . datet ime . now () . i s o f o rmat ()
2 Out [5 3] : '2018−04−18T05 : 50 : 0 7 . 242489 '
3

4 datet ime . datet ime . today () . i s o f o rmat ()
5 Out [5 4] : '2018−04−18T05 : 52 : 0 6 . 088015 '
6

7 ds = datet ime . datet ime . now () . i s o f o rmat ()
8 ds = ds . s p l i t ('T ') [0]
9 Out [5 5] : '2018−04−18 '

http://www.tutorialspoint.com/python/time_strftime.htm
http://www.tutorialspoint.com/python/time_strftime.htm

Lesson 17. File Operations

17.1 Get Folder Path

The command os.path.dirname(path) returns the pathname of the folder. The argu-

ment path can be a pathname of a file or folder.

17.2 Use Relative File Path

2018-10-05: tricky when running from terminal. The code that follows is what I did to get
the folder name of the project that holds the python file in a directory py. Of course, this
algorithm may need to be modified ...

1 path = os . path . abspath (f i l e) # path to python s c r i p t
2 dirname = os . path . dirname (os . path . dirname (path)) # root f o l d e r

17.3 Get Path + File

The command path, file = os.path.split('/Users/donaldelger/Desktop/ 9.pdf')

returns /Users/donaldelger/Desktop and 9.pdf.

17.4 Split Path into Extension plus Other

17.5 Get File Name w/o Extension

pn = pathname of a file. The following returns the file name

41

CHAPTER 17. FILE OPERATIONS 42

os.path.splitext(os.path.basename(pn))[0]

1

2 pn = ' /Users / dona lde l g e r /Desktop/ stove1 . png '
3

4 os . path . basename (pn)
5 Out [1 6] : ' s tove1 . png '
6

7 os . path . s p l i t e x t (fn)
8 Out [1 8] : (' s tove1 ' , ' . png ')
9

10 os . path . s p l i t e x t (fn) [0]
11 Out [1 9] : ' s tove1 '
12

13 os . path . s p l i t e x t (os . path . basename (pn)) [0]
14 Out [2 0] : ' s tove1 '

17.6 Open Finder to Folder

subprocess.run(["open", folder_path])

17.7 Change Directory

The command os.chdir(path) changes the current working directory to the folder path
in pathname path. Note that path can be pathname of a file or a folder.

17.8 Get the Current Working Directory

The command os.getcwd() returns the pathname of the current working directory.

17.9 Check File Modification Date

The command os.path.getmtime(path) gives the Unix timestamp of when the file at

path was last modified.

17.10 Open a File

If something can be done with terminal, it can be done with the module subprocess.

In terminal, the command open ski.jpg will open the image ski.jpg. In python, the
following commands will open this file

1 import subproces s
2 # snip
3

4 subproces s . run ([' open ' , ' s k i . jpg '])

CHAPTER 17. FILE OPERATIONS 43

17.11 Check for File or Folder

For a directory, use os.path.isdir(folder) .

For a file or directory, use os.path.exists(path)

17.12 Write New File + Create All Folders in Path

1 f i l ename = ' / foo /bar/baz . txt '
2 os . makedirs (os . path . dirname (f i l ename) , e x i s t o k=True)
3 with open (f i l ename , ”w”) as f :
4 f . wr i t e (”FOOBAR”)

stack overflow

17.13 Make a Folder

For one folder use os.mkdir(path) For a folder plus all folders in the path, use os.makedirs(path)

17.14 Copy a File, Folder, Directory Tree

File: shutil.copyfile(src, des)

Folder or directory tree: shutil.copytree(src, des)

17.15 Open a File or Folder

Use subprocess.run(["open", fname])

17.16 Rename a File or Folder

os.rename(src, dest)

https://stackoverflow.com/questions/12517451/automatically-creating-directories-with-file-output

CHAPTER 17. FILE OPERATIONS 44

17.17 Remove a Directory Tree

The command shutil.rmtree(path) removes a directory, the subdirectories, and the

files. The argument path must be a directory.

17.18 List Files in a Directory

ref

17.19 List Files in Dir + SubDirs

1 import os
2 my dir = (' /Users / dona lde l g e r . . . / t p l a t e s / task ')
3 f o r root , d i r e c t o r i e s , f i l enames in os . walk (my dir) :
4 # fo r d i r e c t o r y in d i r e c t o r i e s :
5 # pr in t (os . path . j o i n (root , d i r e c t o r y))
6 f o r f i l ename in f i l enames :
7 pr in t (os . path . j o i n (root , f i l ename))

can also use glob

17.20 Building Absolute Path

killer !

1 os . path . j o i n (a , b)

https://stackoverflow.com/questions/3207219/how-do-i-list-all-files-of-a-directory?rq=1

CHAPTER 17. FILE OPERATIONS 45

17.21 Absolute File Path

Check for absolute path. Returns True if the path is an absolute path; False otherwise

os.pth.isabs(my_path)

Convert a relative path to an absolute path (works iff python working directory equals
the current working directory. If the relative path in the current working directory is
'figs/9sit.tex' , then the command to get the absolute path is

os.path.abspath('figs/9sit.tex')

17.22 Relative File Path

17.23 Remove a File, Folder, or Directory

os.remove() will remove a file

os.rmdir() will remove an empty directory.

shutil.rmtree() will delete a directory and all its contents.

Lesson 18. Comparison Operators

For “not equal,” the preferred operator is = !, <> .

18.1 Sorting

See ref. 1, and ref. 2

The built in function sorted returns a sorted iterable:

>>> sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

For a list, the method sort returns a list in place:

>>> a = [5, 2, 3, 1, 4]

>>> a.sort()

>>> a

[1, 2, 3, 4, 5]

46

https://docs.python.org/3.5/howto/sorting.html#sortinghowto
https://wiki.python.org/moin/HowTo/Sorting

Lesson 19. Exception Handling: Try and Except

Operational error did not work ...

try:

print("Hello World")

except OperationalError:

print("This is an error message!")

OperationalError : Errors which are related to MySQL’s operations.

47

Lesson 20. Logging

Useful Resources about Logging

1. Fang
2. Tutorial 1

Fang Tutorial 1 and Tutorial 2 and logging cookbook.

20.1 Concepts

To reset the logger, restart the kernal, or start a new iPython console, or restart Spyder.

20.2 Minimum Worked Example

import logging

logging.getLogger().setLevel(logging.INFO)

logging.debug('This message should appear on the console')

logging.info('So should this')

logging.warning('And this, too')

logging.error('error')

20.3 Setting the Logging Configuration

import logging

logging.basicConfig(filename='example.log',level=logging.DEBUG)

logging.debug('This message should go to the log file')

logging.info('So should this')

logging.warning('And this, too')

48

https://fangpenlin.com/posts/2012/08/26/good-logging-practice-in-python/
https://docs.python.org/3.6/howto/logging.html
https://fangpenlin.com/posts/2012/08/26/good-logging-practice-in-python/
https://docs.python.org/3.6/howto/logging.html
https://docs.python.org/3.6/howto/logging.html#logging-advanced-tutorial
https://docs.python.org/3/howto/logging-cookbook.html

CHAPTER 20. LOGGING 49

20.4 Customizing the Logging Message

1 l o gg ing . bas i cCon f i g (format= '%(levelname) s : (%(asct ime) s) '
2 '%(message) s ' , datefmt= '%m/%d %I :%M')
3 l o gg ing . getLogger () . s e tLeve l (l ogg ing .DEBUG)
4 l o gg ing . debug ('This message should appear on the conso l e ')
5 l o gg ing . i n f o ('So should t h i s ')
6 l o gg ing . warning ('And th i s , too ')
7 l o gg ing . e r r o r (' e r r o r ')

The output from the preceeding code is

DEBUG: (05/20 05:34) This message should appear on the console

INFO: (05/20 05:34) So should this

WARNING: (05/20 05:34) And this, too

ERROR: (05/20 05:34) error

20.5 Capturing Exceptions

add the parameter ex_info=True to the specific logging message.

Example: logging.error('Could not open file', exc_info=True)

Lesson 21. Useful Things

21.1 Read a String (Speech)

1 from os import system
2 system (' say He l lo World ')
3 system (' say −f /Users / dona lde l g e r /Desktop/ ct . txt ')

Line 1 Line 2 reads from a file.

To see more, run the manual command for say like this: []: man say

21.2 Compile a LATEX file

In terminal, navigate to a folder with LATEX files. The command $ latexmk -pdf -gg

will compile the files and build a pdf.

In python, this can be done as follows:
subprocess.run(['latexmk','-pdf', '-gg'])

50

Lesson 22. Arithmetic Operators

Modulo operator % , This gives the remainder of a division operations. For example 11%3 =
2

Floor operator // , in division this gives the integer part of an answer when the answer is
expressed as number + remaineder. For example 11//3 = 3

51

Part II: Standard Modules

52

Lesson 23. Math

See python math module reference for details.

degrees(x) : Convert angle x from radians to degrees

radians(x) : Convert angle x from degrees to radians
asin(x): Returns the arc sine of x in radians

53

https://docs.python.org/3/library/math.html#module-math

Lesson 24. Vector Operations

Cross product

54

Part III: Object Oriented Programming

55

Lesson 25. Big Idea

Control the state (setting of all attributes)

The object has all the variables needed to control the state.

56

Lesson 26. Inheritance

1 c l a s s ImageBuilder (tk . Topleve l) :
2

3 de f i n i t (s e l f) :
4 super () . i n i t (win , bg= ' powder blue ')

57

Lesson 27. Setting and Getting Attributes

To set the attributes of an object from a database row, read the database, extract the row
and convert it to a series object, then

1 d i c t = s e r i e s . t o d i c t ()
2 f o r key in d i c t :
3 s e t t a t t r (s e l f , key , d i c t [key])

58

Part IV: Techniques for Python Programming

59

Lesson 28. Timing Code: What Runs Faster?

To see if option A or B runs fast, get some data:

1 import t ime i t
2 pr in t (t ime i t . t ime i t ('1+3 ' , number=500000))

Great intro to the timeit module: ref

Best intro to timeit: ref

Directly Measure the time ref1

60

https://pythonprogramming.net/timeit-intermediate-python-tutorial/
https://www.geeksforgeeks.org/timeit-python-examples/
https://pythonhow.com/measure-execution-time-python-code/

Lesson 29. Speaking/Talking

On a mac, you can do this:

1 import os
2 os . system (' say ”your t imer has f i n i s h e d ” ')

ref

61

https://stackoverflow.com/questions/16573051/sound-alarm-when-code-finishes

Lesson 30. Docstring

A docstring is a string literal that describes a function or class that occurs at the beginning
that uses """

forms the __doc__ special attribute of the object

For the details of docstrings, see pep-0257

62

https://www.python.org/dev/peps/pep-0257/#what-is-a-docstring

Lesson 31. Printing to the Default Printer

This article explains printing using terminal.

On a mac, the command lp myfile will sent myfile to the default printer.

The following code prints a file

1 import subproces s
2 pn = ' /Users / dona lde l g e r /Desktop/dog . png '
3 subproces s . run ([' lp ' , pn])

63

https://www.cups.org/doc/options.html

Lesson 32. CSV to List

Convert CSV to list: This code

str = 'a,b,c'

my_list = str.split(',')

will return ['a', 'b', 'c']

Remove white space about list items:
The method strip() takes a string and removes the white space from the beginning and
end of the string. For example:

>>> ' The dog runs a '.strip()

'The dog runs a'

To get a list and remove white space

64

Lesson 33. Print to File

See my jupyter notebook file entitled “Print to file” in my Learn folder.

import sys

orig_stdout = sys.stdout

f = open('/Users/donaldelger/Desktop/dog1.txt', 'w')

sys.stdout = f

for i in range(5):

print ('i = ', i)

sys.stdout = orig_stdout

f.close()

65

Lesson 34. Regix Searches

A regular expression is a sequence of characters that defines a search pattern so that a
given string can be searched for the purpose of finding specific parts of this given string.

34.1 Resources

• This page will test regex’s Regex Tester; killer; watch the how to video

• Another regex tester

• Bernd Klien’s Python Course regular expressions and advance regular expres-
sions

• Google education presents this Regex tutorial

• Regex One Tutorial. I think this site is well done. I rediscovered this site on
September 16, 2018.

• Python.org’s documentation of regexs. The kinder version is here

• Harrison’s tutorial

• Tutorial

Tutorials Point

34.2 MWE

1 import re
2

3 s t r i n g = 'Don was born on Oct 17 , 1955 . He i s 61 years o ld . '
4

5 # This w i l l match (any group o f l e t t e r s) space (any group o f numbers)
6 regex = r ” ([a−zA−Z]+ \d+)”
7

8 # Find the f i r s t match ; use the group () method to d i sp l ay the match
9 match object = re . s earch (regex , s t r i n g)

10 f i r s t ma t ch = match object . group ()
11 pr in t (f i r s t ma t ch)
12

13 # Find a l l matches
14 match objects = re . f i n d a l l (regex , s t r i n g)
15 pr in t (match objects)

66

http://regexr.com
https://regex101.com
http://www.python-course.eu/python3_re.php
http://www.python-course.eu/python3_re_advanced.php
http://www.python-course.eu/python3_re_advanced.php
https://developers.google.com/edu/python/regular-expressions
https://regexone.com/references/python
https://docs.python.org/3/library/re.html
https://docs.python.org/3/howto/regex.html#regex-howto
https://pythonprogramming.net/regular-expressions-regex-tutorial-python-3/
http://regexone.com/lesson/character_ranges?
http://www.tutorialspoint.com/python/python_reg_expressions.htm

CHAPTER 34. REGIX SEARCHES 67

The output is

1 Oct 17
2 ['Oct 17 ' , ' i s 61 ']

34.3 The search Function

re.search(regex, string, flags=0)

Parameter Description

regex The regular expression to be matched
string The string to be searched
flags Options to control how the matching is done

34.4 The findall Method

The method findall() will find all matches and return a list.

import re # Regular expression module

exampleString = '''

Jessica is 15 years old, and Daniel is 27 years old.

Edward is 97 years old, and his grandfather, Oscar, is 102.

'''

ages = re.findall(r'\d{1,3}',exampleString)

names = re.findall(r'[A-Z][a-z]*',exampleString)

print(ages)

print(names)

''' ********** Output **************

['15', '27', '97', '102']

['Jessica', 'Daniel', 'Edward', 'Oscar']

'''

Notes:
\d{1,3} means to match all numbers that have a length of 1, 2, or 3.

[A-Z][a-z]* means to match all strings that start with a capital letter followed by any
number of lower case letters.

CHAPTER 34. REGIX SEARCHES 68

34.5 Example

mo = re.search('(%fs)(.*)(%fe)', text, re.DOTALL)

This example shows

• How to combine the Regex object building with the searching

• How to group into three groups. This allows a string to be pulled out.

• The use of (.*) to find all characters (except the new line character).

• The use re.DOTALL to match every character including the new line character.

34.6 Methods for regix objects

Figure 34.1: Some methods from the re module

34.7 Group Extraction

match.group() is the whole match text as usual
match.group(1) is the match text corresponding to the 1st left parenthesis
match.group(2) is the text corresponding to the 2nd left parenthesis

CHAPTER 34. REGIX SEARCHES 69

34.8 Named Group (Placeholder)

The code that follows is from ref . The “P” stands for placeholder.

1 >>> import re
2 >>> match = re . search (' (?P<name> .∗) (?P<phone> .∗) ' , ' John 123456 ')
3 >>> match . group ('name ')
4 ' John '

34.9 Greedy versus NonGreedy

append a ? after the characters for nongreedy
example: regex = r'\FRAME.*?special{.*?}}'

34.10 Tex Doc: Extract text between begin and end

Read the text file. The regex is:
regex = '(\\\\begin{document}?)(.*)(\\\\end{document}?)'

The code for extracting the body is:

1 mo = re . search (regex , tex , re .DOTALL)
2 pr in t (' 2 : ' , mo. group (2))

https://stackoverflow.com/questions/10059673/named-regular-expression-group-pgroup-nameregexp-what-does-p-stand-for

CHAPTER 34. REGIX SEARCHES 70

34.11 Summary Tables

CHAPTER 34. REGIX SEARCHES 71

Lesson 35. Binary Files

You can read, write, and store a binary file in a variable.

1 f i l e i n = ' /Users / dona lde l g e r /Desktop/ t1 . jpg '
2 f i l e o u t = ' /Users / dona lde l g e r /Desktop/ t2 . jpg '
3

4 with open (f i l e i n , ” rb”) as i n f i l e :
5 with open (f i l e o u t , ”wb”) as o u t f i l e :
6 f i l e d a t a = i n f i l e . read ()
7 o u t f i l e . wr i t e (f i l e d a t a)

In line 4, "rb" stands for read as binary.

72

Lesson 36. Raising Exceptions

Use the most specific exception constructor (see the exception heirachy) that semanti-
cally fits your issue. Be specific in your message. Example:
raise ValueError('A very specific bad thing happened')

This article explains how to manually raise/throw an exception.

73

https://docs.python.org/3/library/exceptions.html#exception-hierarchy
http://stackoverflow.com/questions/2052390/manually-raising-throwing-an-exception-in-python

Lesson 37. Pretty Print

For data structures, especially nested dictionaries.

1 import ppr int
2 ppr int . ppr int (whateverdatastructureyouwant)

import pprint

ds = dict((chr(i), list(range(i, i+5))) \

for i in range(65,70))

pprint.pprint(ds, width=10)

74

Lesson 38. Debugging

import pdb; pdf.set_trace()

75

Lesson 39. Subprocess: Running Other Programs

To run illustrator, or other programs, use subprocess:

1 # ==== open a f i l e in i l l u s t r a t o r ==========================
2 f i l e = (' /Users / dona lde l g e r / SpyderPro ject s / Pro j e c t s / '
3 ' 2017−06 image ed i t o r / f i g s / joshna . jpg ')
4 app = ' /App l i ca t i on s /Adobe I l l u s t r a t o r CS5 .1/Adobe I l l u s t r a t o r . app '
5 subproces s . run ([' open ' , '−a ' , app , f i l e])

This code is in:

/Users/donaldelger/SpyderProjects/

Projects/2017-06_image_editor/image_editor.py

To compile a LATEX document, direct the outcome as follows. This keeps a long stream of
text outcome from showing up in iPython.

1 try

2 subprocess.run(['latexmk', '-f', '-pdf', '-gg', '-shell-escape'],

3 stdout=subprocess.DEVNULL,

4 stderr=subprocess.DEVNULL, check=True)

5 except subprocess.CalledProcessError:

6 log.error(f'Could not compile LaTex File for task {pk}')

7 return

76

Part V: Updates and Ecosystem Programs: Termi-

nal, Anaconda, . . .

77

Lesson 40. Updates to Python

install off of the python installation page. then, invoke python in terminal by typing python
3

78

Lesson 41. Terminal

41.1 Open a File (nondefault app)

1 $ open −a s a f a r i /Users / dona lde l g e r /Desktop/my image . jpg

This does not work for illustrator because the file path has spaces in the name. To get
around the spaces, quote the path as follow, or escape the spaces with a \ or drag and
drop the file onto the terminal window.

1 open −a ' /App l i ca t i on s /Adobe I l l u s t r a t o r CS5 .1/Adobe I l l u s t r a t o r . app ' /Users / dona lde l g e r /Desktop/my image . jpg

41.2 Run a Function

79

Lesson 42. Anaconda Updates

bin/conda install -c anaconda python=3.6.1

bin/conda update anaconda

bin/conda update conda

80

Lesson 43. Spyder

To see the functions, classes, etc (outline): View > Pane > Outline

To update spyder

1. In terminal, navigate to the anaconda folder
2. bin/conda update spyder

For updating spyder in a virtual environment:

43.1 Run from Spotlight

To run a program created from Spyder using spotlight, open Script Editor and write an
AppleScript.

1 t e l l a pp l i c a t i on ”Terminal ”
2 a c t i v a t e
3 do s c r i p t ”python /Users / dona lde l g e r / SpyderPro ject s /CourseBuilderR1/ t a s k s e t . py”
4 end t e l l

Listing 43.1: Example: Running a python program using AppleScript

81

Lesson 44. Atom IDE

This video explains how to setup atom.

Editor: Set tab length to 4 spaces. Soft tabs. Show indent guide.
Packages: Turn on auto saved. Install the package atom-runner.

Open config and add two lines:

runner:

python: "/usr/local/bin/python3"

Use control R to run a script.

82

https://www.youtube.com/watch?v=uve1tjVIQ6c

Lesson 45. Ipython

45.1 Reset Variables

The command %reset resets variables in iPython.

45.2 Run a Script

To run the script hoshi.py on the desktop, set the current working directory to the

desktop and give ipython the command In [11]: %run ./hoshi.py

83

Lesson 46. Add a module

To install the module tabulate the steps are:

1. run terminal

2. navigate to the folder that holds \bin

3. give terminal the command:
conda install tabulate

84

Lesson 47. jupyter and jupyterlab

47.1 Jupyter

Corey Schaeffer explain how to use jupyter in this tutorial.

How to launch Jupyter

1. In terminal, navigate to folder holding notebooks.
2. $jupyter notebook

Note: does not seem to work if I leave the canopy virtual environment.

a. Images

Problems: Going up a directory. Absolute image address. Summary to date:

1 ## Works ; s i z e s c a l i n g
2 ## Recommended opt ion
3 ## Does not work
4 ! [r a t] (t e s t . png) ## Works ; no s i z e s c a l i n g

47.2 Jupyter Lab

jupyterlab is the next generation of jupyter.

In terminal, give the command jupyter lab .

Toggle comments on and off: command/

tutorial

2

1

85

https://www.youtube.com/watch?v=HW29067qVWk
https://jcharistech.wordpress.com/2018/09/22/jupyterlab-tutorial-introduction-walkthrough/
https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html

Part VI: Numpy

For WIP, go to
/Users/donaldelger/Documents/*A_C/BookCourses/Python/_wip/numpy.md

This article presents a quick start tutorial for numpy.

a2 = np.array([]) create an ndarray from list

a2.shape find dimensions

a2.reshape(n,m) reshape to dimensions n×m

np.array([1.1]*4) creates ([1.1, 1.1, ...])

np.zeros(4) creates [0., 0., 0., 0.])

np.ones(2) creates ([1., 1.])

np.array(range(0,4)) creates ([0, 1, 2, 3])

86

https://docs.scipy.org/doc/numpy/user/quickstart.html

Lesson 48. Create ndarray

48.1 Passing Lists

np.array([[17, 19, 2], [11, 5, 6]], float)

creates the following 3 × 2 array

array([[17., 19., 2.],

[11., 5., 6.]])

48.2 Random Numbers

The command np.random.rand(3,2) creates

array([[0.50691272, 0.43264325],

[0.99467586, 0.60813541],

[0.6998633 , 0.6262622]])

87

Lesson 49. Basic Math

np.pi

np.sin(theta)

np.radians(theta) : Convert from degrees to radians

np.linalg.norm(m) Magnitude of vector m

np.cross(r, f) Cross product r × f

add vectors; for example add (2, 9, 4) to (1.1, -1, 3)

import numpy as np

a, b = (2, 9, 4), (1.1, -1, 3)

c, d = np.array(a), np.array(b)

sum = c + d; print(sum)

Answer: [3.1, 8., 7.]

88

Lesson 50. Element Wise Operations

Arithmetic operators on arrays always apply to the elements of the array. This is called
element wise operations.

1 >>> a , b
2 (array ([2 . 1 , 3 . 4]) , array ([1 0 , 1 0]))
3 >>> a ∗ b
4 array ([2 1 . , 3 4 .])

89

Lesson 51. Solving Linear Equations

To solve the equations

3x + y = 9x + 2y = 8

apply the following code

import numpy as np

a = np.array([[3,1], [1,2]])

b = np.array([9,8])

x = np.linalg.solve(a, b)

print(x)

to give x = 2 and y = 3.

90

Lesson 52. Converting types of data

tuple(ndarray) : Convert an ndarray to a tuple

ndarray.astype(int) : Convert an ndarray to integer valued

91

Lesson 53. Random Sample

92

Part VII: Symbolic Math: SymPy

93

Lesson 54. Misc

54.1 Declaring Symbols

Symbols need to be declared as shown in the example that follows.

>>> from sympy import *

>>> x = Symbol('x')

>>> y = Symbol('y')

54.2 Integration (Indefinite)

integrate(f, x) returns the indefinite integral
∫
fdx

To do the integral
∫
kxdx, the code is

from sympy import Integral, Symbol

x = Symbol('x')

k = Symbol('k')

print(Integral(k*x, x).doit())

result: k*x**2/2

As shown, the code returns kx2/2

54.3 Integration (Definite)

The command integrate(f, (x, a, b)) evaluates the definite integral
∫ b
a f(x)dx.

For example,
∫ 1
0 0.5(x− x6)dx can be evaluated using

from sympy import *

x = Symbol('x')

f = (x-x**6)/2

print(integrate(f,(x,0,1)))

Answer: 5/28

94

CHAPTER 54. MISC 95

The code shows that
∫ 1
0 0.5(x− x6)dx = 5/28

54.4 Integration (Pretty Printing)

For the integral
∫

ex cos(x), the following commands

>>> init_printing(use_unicode=False,

wrap_line=False, no_global=True)

>>> integrate(exp(x) * cos(x), x)

give this formatted result.

ex

2
sin(x) +

ex

2
cos(x)

Part VIII: Plotting Data

96

Lesson 55. Getting Started

This code, a minimum worked example,

1 import matp lo t l i b . pyplot as p l t
2 p l t . p l o t ([4 0 , 67 , 2 , 22 , 20 , 1 9 . 4])
3 p l t . show ()

produced this plot

This plot

was produced with this code:

1 de f p l o t b a r s (s e l f) :

97

CHAPTER 55. GETTING STARTED 98

2 s e l f . g e t data ()
3 s e l f . c onve r t da t e s ()
4 p l t . gca () . xax i s . s e t ma jo r f o rmat t e r (mdates . DateFormatter ('%b %d '))
5 p l t . gca () . xax i s . s e t ma j o r l o c a t o r (mdates . DayLocator ())
6 p l t . bar (s e l f . dtobj , s e l f . mi les , alpha =0.3 , c o l o r= ' green ')
7 p l t . g c f () . autofmt xdate ()
8 p l t . p l o t (s e l f . dtobj , s e l f . mi les , ' r−−s ' , a lpha =.5)
9 p l t . t i ck params (ax i s= 'y ' , l a b e l s i z e =12)

10 p l t . g r i d (alpha =.4)
11 p l t . x l ab e l ('Date ' , f o n t s i z e =12)
12 p l t . y l ab e l (' Miles ' , f o n t s i z e =12)
13 p l t . s a v e f i g (' /Users / dona lde l g e r /Desktop/myMileage . eps ' , format= ' eps ')
14 p l t . show ()

Lesson 56. About Plotting

The seaborn package provides a way to make publication quality graphics. This Chris
Albon post shows shows some common statistical plots.

99

http://seaborn.pydata.org/introduction.html
http://chrisalbon.com/python/pandas_with_seaborn.html
http://chrisalbon.com/python/pandas_with_seaborn.html

Lesson 57. Style Ticks and Tick Labels

Example: The image that follows shows an increase in the font size and a change in the
color.

The code to specify the changes is

plt.tick_params(axis='both', labelsize=20,

labelcolor='red')!

The method is .tick_params(axis='both', **kwargs) . Matplotlib.org gives the de-
tails.

100

http://matplotlib.org/devdocs/api/_as_gen/matplotlib.axes.Axes.tick_params.html

Lesson 58. Line Types, Colors, and Markers

The image below shows a line that has been modified

This line was modified with the command
plt.plot(x, y, 'v--m')

The technique is to pass information with the string that is passed as the third argument.
This string, which can be in any order, passes information about the color, the marker,
and the line type.

Table 58.1: Line Types

Symbol Explanation

'--' dashed line

'-' solid line

':' dotted line

'-.' dash dot line

101

CHAPTER 58. LINE TYPES, COLORS, AND MARKERS 102

Table 58.2: Line Markers

Symbol Explanation

'v' triangle 1 down

'o' solid circle

'^' triangle 1 up

'3' triangle 2 left

'+' plus

's' square

Lesson 59. Saving a Plot

The method is .savefig(fname, **kwargs)

The maplotlib API gives the details.

The savefig method needs to come before the plt.show() command.

1 fn = ' /Users / dona lde l g e r /Desktop /123 vp2 . pdf '
2 p l t . s a v e f i g (fn , format= ' pdf ')
3 p l t . show ()

Listing 59.1: An example of saving a file

103

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig

Lesson 60. LATEX Labels

The figure that follows shows an example

This example was created using

1 import seaborn
2 import matp lo t l i b . pyplot as p l t
3 p l t . r c (' t ex t ' , usetex=True)
4 p l t . r c (' f ont ' , f ami ly= ' s e r i f ')
5 p l t . p l o t ([2 , 9 , 1 1] , '−−r ')
6 p l t . x l ab e l (r 'Time (s) ' , f o n t s i z e =18)
7 p l t . y l ab e l (r ' Displacement (m) f o r $ F = 10 $ ' ,
8 f o n t s i z e =18)
9 p l t . t i ck params (ax i s= ' both ' , l a b e l s i z e =15)

10 p l t . show ()

Lines 3 and 4 gives the rc settings needed to invoke LATEX. Regarding “rc”, a stackover-
flow post states that configure files are often ended in “rc”, e.g., .xinitrc . Configura-
tions run and they configure your stuff. This practice started before unix.

This matlplotlib webpage gives details about using LATEX.

104

http://stackoverflow.com/questions/37728087/rc-params-in-matplotlib-what-does-rc-stands-for
http://stackoverflow.com/questions/37728087/rc-params-in-matplotlib-what-does-rc-stands-for
http://matplotlib.org/users/usetex.html

Part IX: SQLite

105

Lesson 61. Minimum Program

import sqlite3

db = 'test.db'

conn = sqlite3.connect(db)

c = conn.cursor()

c.close()

conn.close()

106

Lesson 62. Select a Record

query = 'SELECT * FROM figs WHERE pk={}'.format(pk)

data = c.execute(query)

values = data.fetchall()[0]

107

Lesson 63. Insert a record

Follow this structure!

new = 'moose', 5, 2.11

c.execute('INSERT INTO main (a, b, c) VALUES (?, ?, ?)', new)

conn.commit()

Insert an empty record:
c.execute('INSERT INTO figs DEFAULT VALUES'

108

Lesson 64. Find the Maximum of a Column

bb = c.execute('SELECT MAX (goals3_pk) FROM goals3')

pk = bb.fetchall()[0][0] + 1

109

Lesson 65. Delete a Row

parameterized query

self.c.execute('DELETE FROM goals3 WHERE

goals3_pk = ?', (pk,))

110

Lesson 66. Get Column Names

data = c.execute("PRAGMA table_info(figs)")

d2 = data.fetchall()

col_names = [d2[i][1] for i in range(len(d2))]

Note: The SQLite PRAGMA command can be used to read or set various environmental
variables and state flags

111

Lesson 67. Get Number of Records and Last Record

1 query = 'SELECT Count (∗) FROM tasks '
2 data = c . execute (query)
3 pr in t ('Number o f ta sk s : {} ' . format (data . f e t c h a l l () [0] [0]))

Listing 67.1: Number of records

1 c . execute (”SELECT ∗ FROM tasks ORDER BY pk DESC LIMIT 1”)
2 r e s u l t = c . f e t chone ()
3 l a s t pk = r e s u l t [0]
4 pr in t (' l a s t pk : {} ' . format (l a s t pk))

Listing 67.2: Last Record

112

Lesson 68. Get ID of Last Row Inserted

get the lastrowid attribute from the cursor object

self.pk = c.lastrowid

113

Lesson 69. Insert Date or Timestamp as Default

In the db browser, when you create or modify the table insert CURRENT DATE in the
default field.

ref

114

https://stackoverflow.com/questions/200309/sqlite-database-default-time-value-now

Lesson 70. Parameterized Query

Key Idea: Do not assemble a query using Python’s string operations because doing so
makes your program vulnerable to an SQL injection attack.

Ref.

A PQ is a ”variable” or ”parameter” token that specifies a placeholder in the expression
for a value that is filled in at runtime using the sqlite3 bind() family of C/C++ interfaces.

Example 1. Notice the comma:

c.execute('DELETE FROM goals WHERE pk = ?', (pk,))

Example 2:

c.execute('UPDATE goals SET desc=? WHERE pk=?', (new, pk))

Example 3:

purchases = [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),

('2006-04-05', 'BUY', 'MSFT', 1000, 72.00),

('2006-04-06', 'SELL', 'IBM', 500, 53.00),

]

c.executemany('INSERT INTO stocks VALUES (?,?,?,?,?)', purchases)

115

https://sqlite.org/lang_expr.html

Lesson 71. Row Dictionary

The command df.to_dict(orient='records') reads each row of a dataframe into a
dictionary and stores the collection of dictionaries to a list. The code below reads one row
into a df and then extracts this row into a dictionary.

query = 'SELECT * FROM ats WHERE pk={}'.format(pk)

df = pd.read_sql_query(query, conn)

record = df.to_dict(orient='records')[0]

116

Lesson 72. Read Table to Pandas

df = pd.read_sql_query(

"SELECT * FROM main ORDER BY seq", conn)

117

Lesson 73. Read Table, Modify, Write to sqlite3

import pandas as pd

import sqlite3

db = '/Users/donaldelger/Desktop/build_goals/goals.db'

conn = sqlite3.connect(db)

c = conn.cursor()

df = pd.read_sql_query("SELECT * FROM g1 ORDER BY seq", conn)

print(df)

df.iloc[1,1] = 'Smile often'

print(df)

c.executescript('drop table if exists g1;')

df.to_sql('g1', conn)

118

Lesson 74. Create New Table or DataBase

To create a new dbase, use the connect method and this will automatically create a new
file.

The main idea is to create a table. This example

try:

conn = sqlite3.connect(self.dbase)

c = conn.cursor()

qy = """

CREATE TABLE goals (

pk INT PRIMARY KEY NOT NULL,

desc TEXT NOT NULL,

path TEXT,

mpath TEXT

)

"""

c.execute(qy)

logging.info('new course dbase successfully created')

except:

logging.error('Could not create a new dbase for the course\n')

shows the creation of a simple table. Notice that a primary key will auto increment by
default. Thus, I did not specify a keyword.

119

Lesson 75. Sqlite Shell

Ref

sqlite3 or sqlite3 db path: (to start)
terminate commands with ;
dot commands: .databases

75.1 Copying a Table from one dbase to another

ref

1 i n s e r t i n to main . gg s e l e c t ∗ from AM. g t e s t ;
2 attach ' /Users / dona lde l g e r /Desktop/ s q l i t e l e a r n / sq1 . db ' as AM;

120

https://sqlite.org/cli.html
https://stackoverflow.com/questions/2359205/copying-data-from-one-sqlite-database-to-another

Part X: Pandas

121

Lesson 76. Series

76.1 Series to list

weight = pd.Series.tolist(criteria_df['weight'])

122

Lesson 77. Create a DataFrame

killer article

77.1 From Records (rows)

1 import pandas as pd
2 columns = [' owner ' , ' dogs ']
3 rows=[(' ben ' , 0) , (' michael ' , 1) , (' l i nda ' , 1)]
4 df = pd . DataFrame . f rom reco rds (rows , columns=columns)
5 pr in t (df)

77.2 From numpy ndarray

a. Unlabeled rows and columns

The following dataframe

0 1 2

0 2 Build course builder 0.9

1 7 Build three courses 1.1

was created using

import pandas as pd

import numpy as np

data = np.array([

[2, 'Build course builder', .9],

[7, 'Build three courses', 1.1]])

df = pd.DataFrame(data)

b. Labeled Rows and Columns

The dataframe

123

http://pbpython.com/pandas-list-dict.html

CHAPTER 77. CREATE A DATAFRAME 124

pk task seq

--- ---- -------------------- -----

pk2 2 Build course builder 0.9

pk1 7 Build three courses 1.1

was created using

import pandas as pd

import numpy as np

import tabulate

data = np.array([

[2, 'Build course builder', .9],

[7, 'Build three courses', 1.1]])

df = pd.DataFrame(data, columns=

['pk','task','seq'], index=['pk2','pk1'])

print(tabulate.tabulate(df,

headers=list(df.columns)))

77.3 From dictionary

d = {'a': [1, 2, 3], 'b': [4, 5, 6]} # dict

df = pd.DataFrame(d)

"""" Result

a b

0 1 4

1 2 5

2 3 6 """"

77.4 From Excel File

1 import pandas as pd
2

3 fname = ' /Users / dona lde l g e r /Desktop/ t e s t . x l sx '
4

5 df = pd . r e ad ex c e l (fname , sheetname=0)
6 # can a l s o index shee t by name or f e t ch a l l s h e e t s
7 myl i s t = df ['pk '] . t o l i s t ()

77.5 From sqlite3 DataBase

CHAPTER 77. CREATE A DATAFRAME 125

1 import s q l i t e 3
2 import pandas as pd
3 con = s q l i t e 3 . connect ('winco . db ')
4 df = pd . r e ad sq l qu e ry ('SELECT ∗ FROM items ORDER by l o c a t i o n f k ' , con)

Lesson 78. Cells

Get value from a cell:
df.get_value('row', 'cell')

Set a value of a cell:
df.set_value('row', 'cell', 'new ...')

78.1 Given a cell value, Get the row

126

Lesson 79. Column Operations

79.1 Get One or More Columns

df['seq']

df[['seq', 'goal']]

79.2 Column to List

categories = df['categories'].to_list()

79.3 List Column Names

list(df.columns)

df.columns.tolist()

79.4 Get the Index

1 r e co rd s = df . index . va lue s

df.index : this will return an iterable

df.index.tolist() this will return a list

records is a numpy ndarray object (iterable)

79.5 Sum a column

total = df['MyColumn'].sum()

79.6 Divide values in one column by another column

1 df [' c '] = df ['b '] / df [' a ']

127

CHAPTER 79. COLUMN OPERATIONS 128

79.7 Delete a Column

The command is df.drop('seq', axis=1) . The axis=1 parameter denotes that a

column (not a row) is being dropped.

79.8 Add a Column

Use the command df['seq'] = seq2 , where 'seq' is the name of the new column

79.9 Sort a df by One Column

To sort by column named seq , use df.sort_values('seq', inplace=True)

79.10 Specify The Order in Which the Columns Appear

df.reindex_axis([list of column names sorted in desired order], axis=1)

Lesson 80. Number of Rows/Columns in a df

len(df) # number rows

len(df.columns) # number of columns

df.shape # number of rows and columns

Out[1]: (6, 9)

129

Lesson 81. Work with Rows

81.1 Iterate over Rows in a Dataframe

for (index, row) in df.iterrows():

81.2 Add a row to a DataFrame

Step 1: Create a dataframe with one row

Step 2: Append the new dataframe to the existing df

81.3 Select Certain Rows

Select all rows with 'level' equal to 1.

1 df [df [' l e v e l '] == 1]

81.4 Select One Row; More that one row

1 df [0 : 1] # s e l e c t row with index 0
2 df [3 : 4] # s e l e c t row with index 3

81.5 Select Row(s) based on Partial String Search

df[df['text'].str.contains("flu")]

130

CHAPTER 81. WORK WITH ROWS 131

81.6 Select Rows based on a List

This ref gives a simple example.

1 myl i s t = [' grano la ' , ' sa lami ']
2 df2 = df [df [' item '] . i s i n (my l i s t)]

81.7 Reset the Index

Slice some rows out and then reindex to 0, 1, 2, ...

df = df.reset_index(drop=True)

Need the drop=True or an extra column “index” is added

Lesson 82. Convert a Series to a Dictionary

for (index, row) in df.iterrows():

video_record = row.to_dict()

132

Lesson 83. Deep Copy

The command df.copy(deep=True) below is useful sometimes if a shallow copy is an
issue.

133

Lesson 84. Dropping Rows and Columns

drop several rows
df.drop(['Cochise', 'Pima'])

Ref: Chris Albon

134

https://chrisalbon.com/python/data_wrangling/pandas_dropping_column_and_rows/

Lesson 85. Join Dataframes

1 f rames = [df1 , df2 , df3 , . . .]
2 df = pd . concat (frames)
3 df . r e s e t i n d e x (drop=True)

135

Lesson 86. DataFrame to SQL

136

Lesson 87. DataFrame to other formats

87.1 DataFrame to Table

a. Working Example

body2 = tabulate(dfx, headers="keys", tablefmt="latex", showindex="never")

b. Background

This website explains how to use tabulate.

The module tabulate converts a pandas dataframe to a table. This module needs to be
install into the anaconda environment. The code below provides an example

import pandas as pd

import tabulate

pk = [2, 17, 1]

seq = [.5, 1, 4.5]

desc = ['define ct', 'define claim', 'define truth']

dic = {'pk': pk, 'seq': seq, 'desc': desc}

df = pd.DataFrame(data=dic)

col_labels = ['i', 'desc', 'pk', 'seq']

print(tabulate.tabulate(df, headers=col_labels))

The output is

i desc pk seq

--- ------------ ---- -----

0 define ct 2 0.5

1 define claim 17 1

2 define truth 1 4.5

137

https://bitbucket.org/astanin/python-tabulate
https://pypi.python.org/pypi/tabulate

CHAPTER 87. DATAFRAME TO OTHER FORMATS 138

87.2 DataFrame to csv

For the previous table, the command df.to_csv(index_label="num") gives the following
string (carriage returns were added:

'num,desc,pk,seq

\n0,define ct,2,0.5

\n1,define claim,17,1.0\

n2,define truth,1,4.5\n'

Part XI: Tkinter

tkdocs tutorial

Bernd Klein’s Tutorial

139

http://www.tkdocs.com/tutorial/
http://www.python-course.eu/tkinter_message_widget.php

Lesson 88. Big Picture: How to Use TkInter

Good Overview

Bryan Oakley on Stack Overflow

import tkinter as tk

from tkinter import ttk

class SimpleTable(tk.Frame):

def __init__(self, win, df):

super().__init__(master = win)

ttk.Button(self, text='test').grid()

root = tk.Tk()

mt = SimpleTable(root, df)

root.geometry('300x400')

mt.grid()

root.mainloop()

140

https://python-forum.io/Thread-Tkinter-Getting-Tkinter-Grid-Sizing-Right-the-first-time
https://stackoverflow.com/questions/17466561/best-way-to-structure-a-tkinter-application

Lesson 89. Label Widget

Ref.

from tkinter import *

root = Tk()

root.title("Colorizing a Font")

Label(root,

text="Red Text in Times Font",

fg = "red",

font = "Times").pack()

Label(root,

text="Green Text in Helvetica Font",

fg = "light green",

bg = "dark green",

font = "Helvetica 16 bold italic").pack()

Label(root,

text="Blue Text in Verdana bold",

fg = "blue",

bg = "yellow",

font = "Verdana 10 bold").pack()

root.mainloop()

141

http://www.python-course.eu/tkinter_labels.php

Lesson 90. Button

90.1 Use Image

The next image shows a button displayed with an image and one displayed with text.

1 import t k i n t e r as tk
2 from PIL import ImageTk , Image
3

4 de f t a l k () :
5 pr in t (' hi the re ')
6

7 root = tk .Tk()
8 image = Image . open (”temp . png”)
9 new s i ze = in t (22 / image . s i z e [1] ∗ image . s i z e [0]) , 22 # 22 p i x e l s high

10 image2 = image . r e s i z e (new s ize , Image .ANTIALIAS)
11 image3= ImageTk . PhotoImage (image2)
12 b = tk . Button (root , t ex t=” h e l l o ” , image=image3 , command=ta l k)

142

CHAPTER 90. BUTTON 143

13 b . image = image
14 b . g r id (padx=15, pady=15)
15 tk . Button (root , t ex t= 'Text Button ') . g r i d ()
16 root . mainloop ()

Lesson 91. Text Widget

The window

was generated by

from tkinter import *

root = Tk()

T = Text(root, height=10, width=50)

T.pack()

quote = """HAMLET: To be, or not to be--

that is the question ... """

T.insert(END, quote)

mainloop()

note: use tk.END for the index for common module import

The following image shows a scroll bar

that was added using

144

CHAPTER 91. TEXT WIDGET 145

from tkinter import *

root = Tk()

S = Scrollbar(root)

T = Text(root, height=4, width=50)

S.pack(side=RIGHT, fill=Y)

T.pack(side=LEFT, fill=Y)

S.config(command=T.yview)

T.config(yscrollcommand=S.set)

quote = """HAMLET: To be, or not to be ..."""

T.insert(END, quote)

mainloop()

91.1 Get Text

box.get('1.0', 'end-1c')

The ’1.0’ means to read text from line 1 character zero. The ’end-1c’ means to read text
to the end character minus one character. Without subtracting one character, a line break
will be added.

Lesson 92. ScrolledText Widget

Combine a text box and a vertical scrollbar:

1 import t k i n t e r . s c r o l l e d t e x t as tk s t
2 text box = tk s t . Sc ro l l edText (master=w2 , wrap=tk .WORD, width=79, he ight=10, bg= ' powder blue ')
3 text box . g r id (padx=10, pady=10)
4 t p l a t e = ' See . . \nExperience . . \ nEngage in . . \ nDine at . . \ Check out '
5 text box . i n s e r t (tk . INSERT, t p l a t e)

To get the contents of the window: example

1 s c r o l l t e x t w idge t name . get (1 . 0 , tk .END)

start at line 1, character zero and finish at the end of the text; returns a string

146

Lesson 93. Frame

1 import t k i n t e r as tk
2 root = tk .Tk()
3 root . geometry (' 200x200+300+300 ')
4 f 1 = tk . Frame(root , bd=3, r e l i e f= ' groove ' , bg= ' powder blue ')
5 f 1 . g r i d (padx=10, pady=10)
6 tk . Label (f1 , t ex t=”Hey Noose”) . g r i d (padx=10, pady=10)
7 root . mainloop ()

147

Lesson 94. LabelFrame

1 f 1 = tk . LabelFrame (s e l f , bd = 2 , t ex t = ”Learning Outcomes” ,
2 f g = ' red ' , r e l i e f = ' r a i s e d ' , padx = 5 ,
3 pady = 5 , font = ”Verdana 12 bold ”)

148

Lesson 95. Toplevel

The toplevel window

was created using

import tkinter as tk

root = tk.Tk()

root.geometry('220x200')

tk.Label(root, text="Main Window").grid()

top = Toplevel(bg='red')

top.title("User Input")

top.geometry('200x100')

top.lift(root)

tk.Label(top, text="New Window").grid()

root.mainloop()

149

Lesson 96. Entry Widget

Fig. 96.1 shows an example of an entry widget

Figure 96.1: An entry widget

The code to create Fig. 96.1 is presented in Listing 96.

1 import t k i n t e r as tk
2

3

4 de f pt () :
5 pr in t (dd . get ())
6

7 root = tk .Tk()
8 tk . Label (root , t ex t=”Favor i t e Food?”) . g r i d ()
9 dd = tk . Entry (root)

10 dd . g r id ()
11 dd . i n s e r t (0 , ' p izza ')
12 tk . Button (root , t ex t= ' pr in t entry ' , command=pt) . g r i d ()
13 root . mainloop ()

Listing 96.1: Listing for Entry Widget Code

96.1 Updating an Entry Box

1

2 # se t up the entry box
3 pk box = tk . Entry (s e l f)
4 pk box . g r id ()
5 pk = 22
6 pk box . i n s e r t (0 , pk)
7

8 # update the entry box a f t e r pk has changed
9 pk box . d e l e t e (0 , ' end ')

10 new pk = 29
11 pk box . i n s e r t (0 , new pk)

150

CHAPTER 96. ENTRY WIDGET 151

96.2 Scrolling Entry Widget

import tkinter as tk

root = tk.Tk()

scrollbar = tk.Scrollbar(orient="horizontal")

e3 =tk.Entry(xscrollcommand=scrollbar.set)

e3.focus()

e3.pack(side="bottom",fill="x")

#e3.grid(row=10, column=7)

scrollbar.pack(fill="x")

scrollbar.config(command=e3.xview)

root.mainloop()

Lesson 97. Combobox

1 #======= Combo Box to S e l e c t CookBook Categor i e s ============
2 ca t s = s e l f . cookbook . c a t e g o r i e s () # L i s t to d i sp l ay
3 cb = ttk . Combobox(s e l f , va lue s=cat s)
4 cb . g r id (row = 0 , column=1, s t i c k y = tk .W)
5 cb . s e t (ca t s [0])
6 s e l f . combobox = cb

152

Lesson 98. simpledialog

98.1 Example

The following window gets user input.

To get the selected value from the combobox, use self.combogox.get()

The previous window was created with

import tkinter.simpledialog as sd

import tkinter as tk

from tkinter import ttk

def ask_age():

age = sd.askinteger("askinteger", "Enter your age")

print(age)

root = tk.Tk()

root.geometry('200x100')

tk.Button(root, text='Ask Age', command=ask_age).grid()

root.mainloop()

98.2 Parameters

seq = sd.askstring('Seq Number?', 'Sequence number?'

chap = sd.askinteger("Print New Problems", "Chapter number?")

153

Lesson 99. Checkbutton Widget

The purpose of a checkbutton widget is to allow the user to read and select a two-way
choice.

Ref.

Use tk not ttk due to scant ttk documentation

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3

4 de f p a c k l i s t () :
5 pr in t (var . get () , chk . s t a t e ())
6

7 tkwindow = tk .Tk()
8 tkwindow . geometry (' 200x200 ')
9

10 # checkbox with ttk
11 chk = ttk . Checkbutton (tkwindow , t ext=” foo ”)
12 chk . g r id (column=0, row=0, s t i c k y= 'W')
13

14 # checkbox with tk
15 var = tk . IntVar ()
16 var . s e t (1) # how to s e t d e f au l t s t a tu s as checked . . .
17 cb = tk . Checkbutton (tkwindow , t ext= 'Don\ ' s Kit ' , v a r i a b l e=var)
18 cb . g r id (s t i c k y= 'W')
19

20 t tk . Button (tkwindow , t ext=”Pr int Checkbutton Values ” , command=p a c k l i s t) . g r i d ()
21

22 tkwindow . mainloop ()

99.1 Example

154

https://stackoverflow.com/questions/4236910/getting-tkinter-check-box-state

CHAPTER 99. CHECKBUTTON WIDGET 155

path name: ../Learn/tkCheckbutton/checkbutton_selector.py

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3

4 de f g e t i t ems () :
5 pr in t ()
6 f o r (i , item) in enumerate (items) :
7 i f cb [i] . get () :
8 pr in t (item)
9

10 i tems = [' a ' , 'b ' , ' c ' , 'd ']
11

12 root = tk .Tk()
13 f 1 = tk . Frame(root)
14 f 1 . g r i d (padx=15, pady=15)
15

16 cb s t a tu s = [0 , 1 , 0 , 1]
17 cb = []
18 f o r (i , item) in enumerate (items) :
19 cb . append (tk . IntVar ())
20 cb [i] . s e t (cb s t a tu s [i])
21 widget = tk . Checkbutton (f1 , t ex t=item , va r i ab l e=cb [i])
22 widget . g r i d (s t i c k y=tk .W)
23

24 t tk . Button (f1 , t ex t= ' L i s t Se l e c t ed Items ' , command=ge t i t ems) . g r i d (s t i c ky=tk .W)
25

26 tk . mainloop ()

Lesson 100. Listbox Widget

The purpose of a listbox is to display a list and then allow the user to select one or more
item.

The ref describes how to add a scroll bar to a Listbox widget.

1 # Listbox with tk
2 import t k i n t e r as tk
3

4 de f pk i t s () :
5 ””” p r in t the s e l e c t e d l i s t i t e rms ”””
6 index = k i t s l b o x . c u r s e l e c t i o n ()
7 f o r i in index :
8 pr in t (k i t s [i])
9

10 tkwindow = tk .Tk()
11 tkwindow . geometry (' 200x200 ')
12

13 tk . Button (tkwindow , t ext= ' Se l e c t Kits ' , command=pk i t s) . g r i d (s t i c k y=tk .W)
14

15 k i t s = ['Don\ ' s k i t ' , 'Gear Box 1 ' , 'XC Ski ' , ' Alpine Ski ']
16

17 k i t s l b o x = tk . Listbox (tkwindow , se lectmode=tk .MULTIPLE, he ight=len (k i t s))
18 k i t s l b o x . g r i d ()
19

20 f o r k i t in k i t s :
21 k i t s l b o x . i n s e r t (tk .END, k i t)
22

23 tkwindow . mainloop ()

156

http://effbot.org/zone/tkinter-scrollbar-patterns.htm

Lesson 101. Canvas

Some references are:

• tkdocs tutorial
• Great tutorial: here.
• EU site

101.1 Line

import tkinter as tk

root = tk.Tk()

root.geometry('350x200+1000+0')

root.title('Canvas Example')

w = tk.Canvas(root, borderwidth=2, bg='bisque', relief='groove',

width=300, height=150)

w.grid(padx=10, pady=10)

w.create_line(10, 20, 200, 100, fill='red', width=2)

root.mainloop()

157

http://www.tkdocs.com/tutorial/canvas.html
https://www.andrew.cmu.edu/course/15-112-n12/applications/ln/canvas/canvas.html
http://www.python-course.eu/tkinter_canvas.php

CHAPTER 101. CANVAS 158

101.2 Image

Add a path to CourseBuilder

import sys

sys.path.append('/Users/donaldelger/SpyderProjects/CourseBuilderR1')

import tkinter as tk

import image

root = tk.Tk()

root.geometry('1600x800+700+0')

============= Add the canvas ===========================

c1 = tk.Canvas(root, width=1600, height=800, bg='bisque', relief='groove')

c1.grid()

=========== Add the leftmost image ===============================

image1 = '/Users/donaldelger/SpyderProjects/Learn/tkCanvas/figs/p3.jpg'

i1 = image.Image4tk(image1).tkimg

c1.create_image(400, 400, image=i1)

c1.image = i1 # prevent the tk.image problem by saving the file

=========== Add the rightmost image ===============================

image2 = '/Users/donaldelger/SpyderProjects/Learn/tkCanvas/figs/p4.jpg'

i2 = image.Image4tk(image2).tkimg

c1.create_image(1200, 400, image=i2)

c1.image = i1

root.mainloop()

Lesson 102. Interact with User: Dialog, Message, File

This works:

1 ””” Return the f u l l path to the ex c e l f i l e conta in ing task pks ”””
2 root = tk .Tk()
3 root . withdraw ()
4 e x c e l f o l d e r = ' /Users / dona lde l g e r /Documents/ EFM12E/ Exc e l L i s t s '
5 f i l ename = askopenf i l ename (parent=root , i n i t i a l d i r=e x c e l f o l d e r)
6 root . update ()
7 root . des t roy ()
8 r e turn f i l ename

The filedialog module. See this article.

.askopenfilename(option=value, ...) Select an existing file.

.asksaveasfilename(option=value, ...) Create or modify an existing file.

1 from tk i n t e r import Tk
2 from tk i n t e r . f i l e d i a l o g import askopenf i l ename
3

4 Tk () . withdraw ()
5 f i l ename = askopenf i l ename ()
6 pr in t (f i l ename)

to start with a initial directory:
filename = askopenfilename(initialdir=mydir)

Code that works for opening an existing file (on desktop)

1 from tk i n t e r import f i l e d i a l o g as fd
2 import t k i n t e r as tk
3 root = tk .Tk()
4 md = ' /Users / dona lde l g e r /Desktop '
5 fn = fd . askopenf i l ename (i n i t i a l d i r=md)
6 root . des t roy ()
7 pr in t (fn)

Problem: file selection window does not close. Solution:

root = tk.Tk()

md = '/Users/donaldelger/Documents/*A_C/BookCourses/Finance/tasks/4/views'

filename = askopenfilename(initialdir=md)

root.destroy()

159

http://tkinter.unpythonic.net/wiki/tkFileDialog

CHAPTER 102. INTERACT WITH USER: DIALOG, MESSAGE, FILE 160

102.1 Get a New File Name From User

1 from tk i n t e r import f i l e d i a l o g as fd
2 f o l d e r = ' /Users / dona lde l g e r /Desktop/ gear / '
3 i f not os . path . i s d i r (f o l d e r) :
4 os . mkdir (path)
5 fn = fd . a sk savea s f i l ename (i n i t i a l d i r=fo l d e r , d e f au l t e x t en s i on= ' . tex ' ,
6 i n i t i a l f i l e= ' g e a r l i s t ')
7 i f fn :
8 pr in t (fn)

Lesson 103. Open/Create a File or Folder

1 fname=fd . a s k s a v e a s f i l e (i n i t i a l d i r=fo l d e r , i n i t i a l f i l e= 'name . tex ')

NMT describes the details

103.1 Open/Create a Folder

title does not seem to do anything

1 import t k i n t e r as tk
2 from tk i n t e r import f i l e d i a l o g as fd
3 root = tk .Tk()
4 root . d i r e c t o r y = fd . a s kd i r e c t o r y (t i t l e=my t i t l e , i n i t i a l d i r=my path)
5 pr in t (root . d i r e c t o r y)
6 root . mainloop ()

161

https://infohost.nmt.edu/tcc/help/pubs/tkinter/web/tkFileDialog.html

Lesson 104. Notebook Widget (Tabbed)

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3 from PIL import ImageTk , Image
4

5 root = tk .Tk()
6 n = ttk . Notebook (root)
7 f 1 = ttk . Frame(n) # f i r s t page , which would get widgets gr idded in to i t
8 f 2 = ttk . Frame(n) # second page
9 n . add (f1 , t ex t= 'One ')

10 n . add (f2 , t ex t= 'Two ')
11 n . g r id ()
12

13 t tk . Label (f1 , t ex t = 'howdy hosh i ') . g r i d ()
14 t tk . Label (f2 , t ex t = 'walk hosh i ') . g r i d ()
15

16 root . mainloop ()

Listing 104.1: Example of a simple notebook

162

Lesson 105. Message Box

105.1 Warning Message Box

A message box looks like

The code that created this example is

1 import t k i n t e r as tk
2 from tk i n t e r import messagebox
3

4 de f t e s t () :
5 messagebox . showerror (”Warning ! ” , ”Error in . . . ”)
6

7 top = tk .Tk()
8 top . geometry (”200x100”)
9 B1 = tk . Button (top , t ex t=”Test MessageBox” ,

10 command=t e s t)
11 B1 . p lace (x=35, y=50)
12 top . mainloop ()

105.2 Yes/No Messagebox

This message box is used for logic.

163

CHAPTER 105. MESSAGE BOX 164

import tkinter as tk

from tkinter import messagebox

def new_book():

if messagebox.askyesno('Check', 'Really create a new book?'):

call NewBook here

pass

return

root = tk.Tk()

tk.Button(root, text='New Book', command=new_book).grid()

root.mainloop()

The following code asks one yes/no question and then destroys the widget

1 import t k i n t e r as tk
2 from tk i n t e r import messagebox
3

4 c l a s s Question :
5 ””” Ask one ques t i on and then des t roy the widget ”””
6 de f i n i t (s e l f) :
7 s e l f . root = tk .Tk()
8 tk . Label (s e l f . root , t ex t= 'Move Forward? ') . g r i d ()
9 s e l f . root . geometry (' 300x50+0+0 ')

10 s e l f . r e sponse = messagebox . askyesno ('Check ' ,
11 ' Real ly c r e a t e new task f o l d e r s ? ')
12 s e l f . root . des t roy ()
13 s e l f . root . mainloop ()
14

15 a = Question ()
16 pr in t (a . r e sponse)

105.3 Box Types

showinfo()
showwarning()
showerror ()
askquestion()
askokcancel()
askyesno ()
askretrycancel ()

Lesson 106. The filedialog module

106.1 Overview of the 3 module functions

106.2 askdirectory

You can get an existing directory or create a new directory.

The function returns the name of the directory.

1 import t k i n t e r as tk
2 from tk i n t e r import t tk
3 from tk i n t e r import f i l e d i a l o g as fd
4

5 de f f l d () :
6 d i r = ' /Users / dona lde l g e r /Desktop '
7 d i r e c t o r y = fd . a s kd i r e c t o r y (i n i t i a l d i r=dir ,
8 message= ' s e l e c t the root f o l d e r ')
9 pr in t (d i r e c t o r y)

10

11 root = tk .Tk()
12 t tk . Button (root , t ex t= 'Get Folder ' , command=f l d) . g r i d (padx=25, pady=25)
13 root . mainloop ()

165

Lesson 107. Entry box, Get Data on Return

task. create an entry box such that a return will read the data

def callback(event):

print(dd.get())

Build a Gui and get the cell value on return ...

import tkinter as tk

root = tk.Tk()

root.geometry('500x200+0+1000')

dd = tk.Entry(root)

dd.grid()

dd.bind("<Return>", callback)

root.mainloop()

Recover which widget was clicked: event.widget

Get widget’s data: event.widget.get()

166

Lesson 108. Grid

167

Lesson 109. Text Box with Scrolling

from tkinter import *

root = Tk()

root.title('Scrolling Text Box Example')

S = Scrollbar(root)

T = Text(root, height=4, width=50)

S.grid(sticky='nsew', row=0, column=1)

T.grid(sticky='nsew', row = 0, column=0)

S.config(command=T.yview)

T.config(yscrollcommand=S.set)

petlist = 'dog\ncat\nrat \nsnake\nhampster\nfish \nsnake\nhampster\nfish '

T.insert(END, petlist)

Entry(root).grid(sticky='W')

mainloop()

168

Lesson 110. Passing Variables Using Lambda

A lambda function without parameters is used by this lambda function to pass arguments
in the context of tkinter:

169

Lesson 111. Event Binding

To bind widget “pk”, describe the event and list the function to call. If the function is a
method in a class, define the arguments as (self, event).

pk.bind('<Return>', self.view)

def view(self, event):

111.1 Bind to Main Window

The widget needs focus. See stackoverflow. For example:

1 de f hey (event) :
2 pr in t ('hey , hey , hey . . . ')
3

4 import t k i n t e r as tk
5

6 root = tk .Tk()
7 tk . Label (root , t ex t=”Hoshi i s at my window”) . g r i d ()
8 tw = tk . Text (root)
9 tw . g r id ()

10 tw . bind ('<Return> ' , hey)
11 tw . f o c u s s e t ()
12 tw . bind ('<Left> ' , hey)
13 root . mainloop ()

170

https://stackoverflow.com/questions/19895877/tkinter-cant-bind-arrow-key-events

CHAPTER 111. EVENT BINDING 171

Another example, event binding is used to select a line of text in a text widget.

1 de f hey (event) :
2 pr in t ('hey , hey , hey . . . ')
3 de f g e t l i n e (event) :
4 pr in t (' g e t t i n g l i n e ')
5 pr in t (tw . get (' s e l . f i r s t l i n e s t a r t ' , ' s e l . l a s t l i n e end '))
6 pr in t (tw . get (' cur rent l i n e s t a r t ' , ' cur rent l i n e end '))
7

8 import t k i n t e r as tk
9

10 root = tk .Tk()
11 tk . Label (root , t ex t=”Hoshi i s at my window”) . g r i d ()
12 tw = tk . Text (root)
13 tw . g r id ()
14 tw . bind ('<Return> ' , hey)
15 #KP Down
16 tw . f o c u s s e t ()
17 tw . bind ('<Left> ' , hey)
18 tw . bind ('<Sh i f t−Up> ' , g e t l i n e)
19 root . mainloop ()

Lesson 112. Removing and Hiding Widgets

calling widget.destroy() removes the widget and all its children.

calling widget.grid_forget() removes the widget from view but does get rid of it.

Note! For removing/hiding images, see the tk image problem in Lesson 121.

172

Lesson 113. Images

For a gif:

myimage = tk.PhotoImage(file=myfile)

tk.Label(root, image=myimage)

For a non-gif: I have written a class to convert an image file to a tk image objects.
/Users/donaldelger/SpyderProjects/CourseBuilderR1/image.py

173

Lesson 114. Getting Widgets (Images) to Cycle

Need to take care of the tk Image Problems; see 121

Create a widget variable name that is global.

Use either the widget.destroy() or widget.grid_forget()

(both will work ...)

174

Lesson 115. Power User Methods

115.1 Making Widgets Stretchable; Controlling widget size

Use the grid_columnconfigure method on the widget

1 root = Tk()
2 root . g r id co lumncon f i gu re (0 , weight=1)
3 root . g r i d r owcon f i gu r e (0 , weight=1)

175

CHAPTER 115. POWER USER METHODS 176

115.2 Finding/Changing the Attributes of Widget

This was the key for getting images to cycle:

Use w.configure method

1 de f showImage (i) :
2 i f i [0] > 2 :
3 i [0] = 0
4 pr in t (i)
5 my l i s t = [image tk , image tk1 , image tkc]
6 l b l 1 . c on f i gu r e (image=my l i s t [i [0]])
7 i [0] = i [0] + 1

The following message displays for 2 seconds.

115.3 Displaying a Message for 5 seconds (or 2)

1 top = tk . Topleve l (s e l f , bg= ' powder blue ')
2 f ont1 = ”He lve t i ca 80 bold i t a l i c ”
3 msg = 'Updated : pk = {} ' . format (dct ['pk '])
4

5 l a b e l 1 = tk . Label (top , t ex t=msg , width=len (msg) , f ont=font1)
6 l a b e l 1 . g r i d (padx=30, pady=30)
7 top . a f t e r (2000 , top . des t roy)

Lesson 116. Calendar

This is source code for ttkcalendar.py which I modified to run in current version of tk.

Ref

Needed to revise the ttkcalendar.py module

Files are stored in learn/ttkcalendar folder.

1 import t k i n t e r as tk
2 import t tkca l enda r
3 import t k i n t e r . s imp l ed i a l og as sd
4 from tk i n t e r import t tk
5

6 de f don () :
7 de f g e t da t e () :
8 x = t t k c a l . s e l e c t i o n
9 pr in t ('The s e l e c t e d date i s : ' , x)

10

11 root = tk .Tk()
12 root . t i t l e ('Ttk Calendar ')
13 t tk . Button (root , t ex t= 'Get Date ' , command=get da t e) . g r i d (s t i c k y=tk .W)
14 # f i r s tweekday : 0 = monday , 1 = tuesday ; 6 = sunday
15 t t k c a l = t tkca l enda r . Calendar (f i r s tweekday=6)
16 t t k c a l . g r i d ()
17

18 root . mainloop ()
19

20 i f name == ” main ” :
21 don ()

177

http://svn.python.org/projects/sandbox/trunk/ttk-gsoc/samples/ttkcalendar.py
https://stackoverflow.com/questions/27774089/python-calendar-widget-return-the-user-selected-date

Lesson 117. Colors

178

Part XII: GUI CookBook

179

Lesson 118. Message that Self Destructs about 2 Seconds

1 import t k i n t e r as tk
2 root = tk .Tk()
3 prompt = 'Timer i s Done '
4 f ont1 = ”He lve t i ca 80 bold i t a l i c ”
5 l a b e l 1 = tk . Label (root , t ex t=prompt , width=len (prompt) , f ont=font1)
6 l a b e l 1 . g r i d ()
7

8 de f c l o s e a f t e r 2 s () :
9 root . des t roy ()

10

11 root . a f t e r (2000 , c l o s e a f t e r 2 s)
12 root . mainloop ()

Written as a class, this algorithm looks like this:

1 c l a s s MyMessage (tk . Topleve l) :
2 ””” Show a message that s e l f d e s t r u c t s ”””
3 de f i n i t (s e l f , win , message , time) :
4 ””” Show a message that s e l f d e s t r u c t s
5

6 Parameters :
7 win (t k i n t e r window) : the window a s s o c i a t ed with top l e v e l
8 message (s t r i n g) : the message
9 time (i n t e g e r) : time in seconds f o r the message to d i sp l ay

10 ”””
11 super () . i n i t (win , bg= ' powder blue ')
12 s e l f . g r i d ()
13 prompt = message
14 f ont1 = ”He lve t i ca 80 bold i t a l i c ”
15 l a b e l 1 = tk . Label (s e l f , t ex t=prompt , width=len (prompt) , f ont=font1)
16 l a b e l 1 . g r i d (padx=30, pady=30)
17 s e l f . a f t e r (time ∗1000 , s e l f . c l o s e w in)
18

19 de f c l o s e w in (s e l f) :
20 s e l f . de s t roy ()

180

Part XIII: Images in Python

181

Lesson 119. Summary

The 4 essential steps are

1. Import the python image library classes (line 2)
2. Open an image (line 8)
3. Resize the image as needed (line 10); this can also be done with the .thumbnail

method.
4. Convert the image so that python can use it (line 11)
5. Reference the image anywhere that tkinter expects an image; note that the image

must be saved as an attribute of the tk object (line 13)

1 import t k i n t e r as tk
2 from PIL import ImageTk , Image
3

4 de f t a l k () :
5 pr in t (' hi the re ')
6

7 root = tk .Tk()
8 image = Image . open (”temp . png”)
9 new s i ze = in t (22 / image . s i z e [1] ∗ image . s i z e [0]) , 22 # 22 p i x e l s high

10 image2 = image . r e s i z e (new s ize , Image .ANTIALIAS)
11 image3= ImageTk . PhotoImage (image2)
12 b = tk . Button (root , t ex t=” h e l l o ” , image=image3 , command=ta l k)
13 b . image = image
14 b . g r id (padx=15, pady=15)
15 tk . Button (root , t ex t= 'Text Button ') . g r i d ()
16 root . mainloop ()

182

Lesson 120. About Images in Python

There are three ways to use images in python

1. Display two color images (.xbm format) using the BitmapImage class.

2. Display full color images (.gif, .pgm, or .ppm) using the PhotoImage class.

3. Using image processing software (ImageMagick or PIL) to convert your image and
then use options 1 or 2.

This article compares .gif to .png and .png.

.pgm: The acronym pgm stands for portable greymap”. A .pgm file has a text-based image
format for greyscale images.

.ppm: The PPM (portable pix map) image format is encoded in text that is human read-
able. See this article.

183

https://www.sitepoint.com/gif-jpg-png-whats-difference/
https://www.cs.swarthmore.edu/~soni/cs35/f13/Labs/extras/01/ppm_info.html

Lesson 121. Solving the tk Image Problem

The problem is that a tk image, when used in a function/class/etc. will not appear due to
a bug in tk. The solution is to save the image as an attribute called image as follows:

my_widget.image = image_object

See this effbot article for more information.

184

http://effbot.org/pyfaq/why-do-my-tkinter-images-not-appear.htm

Lesson 122. About PIL

The current version is called pillow; a fork of pil.

PIL allows you to process images with python.

This webpage presents a tutorial.

from PIL import Image

myimage = Image.open(filename)

myimage.load()

myimage.format # file type

myimage.size # pixel size

myimage.mode # color model

from PIL import Image, ImageFilter

im = Image.open("lena.png")

im.thumbnail(size)

im.save(fname)

im.show()

im2 = im.filter(ImageFilter.CONTOUR)

im2.save('lena_contour' + '.jgp')

im2.show()

122.1 Filters

Original image

185

http://www.pythonforbeginners.com/gui/how-to-use-pillow

CHAPTER 122. ABOUT PIL 186

The contour filter

The emboss filter

CHAPTER 122. ABOUT PIL 187

Table 122.1: Image enhancement filters

Filter Explanation

BLUR
CONTOUR
DETAIL
EDGE ENHANCE
EDGE ENHANCE MORE
EMBOSS
FIND EDGES
SMOOTH
SMOOTH MORE
SHARPEN

122.2 Thumbnails (making images of given size)

Lesson 123. Example: Resizing (upwards)

The problem is that the image is not filling the window. The solution is to resize the image.

1 from PIL import Image
2 import numpy as np
3

4 mp = Image . open (' mypicture . jpg ')
5 mp. show ()
6

7 s = np . array (mp. s i z e)
8 s i z e = s ∗ 500/min (mp. s i z e)
9 s i z e = tup l e (s i z e . astype (i n t))

10

11 m2. show (mp. r e s i z e (s i z e))

In line 7, the size method returns a tuple with the current image size.

Lines 7 to 9 use numpy’s vector operations to convert the image size to have a minimum
dimension of 500. Line 9 converts the numpy array to integer and then to a tuple.

Line 11 resizes the image and then displays it.

188

Lesson 124. ImageMagick

imagemagick.org

December 28, 2018. I reinstall using
brew install imagemagick

I had to screw around with brew to get it to link. The command that worked was
brew link --overwrite imagemagick

Then, I tested using a file on desktop
magick 1.jpg 1.png

This converted 1.jpg to a .png file.

To resize into a 500 x 500 box while maintaining the aspect ratio, I used
convert 1.jpg -resize 500x500 1r.gif

I had a lot of trouble with pdf conversions due to a black background. I had to add the
- flatten option. The command I used was
magick convert -density 300 -quality 100 -flatten 1fb.pdf 1fb.jpg

Use the convert method; link

Update: 2017-11-08: Need to update to version 7 and use magick or magick-script.

Update: add the -append parameter to make multiple pages of images stack onto one
page.

1 a = subproces s . run ([' convert ' , '−dens i ty ' , ' 500 ' , '−append ' , pd f in , jpg out])

The ImageMagick command-line tools exit with a status of 0 if no problems occur. If
problems do occur, the exit status is 1.

124.1 What Works

sp = subprocess.run(['convert', '-density', '300', 'dog.pdf', 'dog.jpg'])

sp.returncode = 0 for success in file conversion

189

https://www.imagemagick.org/script/index.php
https://www.imagemagick.org/script/convert.php

CHAPTER 124. IMAGEMAGICK 190

The terminal command follows.

convert -density 5000 stand.pdf output.png

The density setting controls the image quality.

The python command follows.

subprocess.run(['convert', '-density', '4000',

'stand.pdf','1.png'])

124.2 Quality from a pdf

June 20, 2019: The following worked well:
convert -density 300 1.pdf -quality 100 -flatten 1.png

Notes: need to trial and error convert; man helps some; -flatten is needed or background
will be black–go figure?

So far, here are the rules I’ve developed. Convert the pdf to a jpg (not png). Set
-quality 90 . Try supersampling. A density of about 200 seems to work fine.

Lesson 125. MWE

see /Users/donaldelger/SpyderProjects/CourseBuilderR1/image.py

191

Part XIV: LATEX Scripting

192

Lesson 126. Overview

I write a LATEX file and use this syntax [[topic]] to indicate where I want to insert text
into the file.

Next, I run a python script that executes the following steps.

1. Read the LATEX file into a string variable sv

2. Replace the curly brackets and the [[topic]] using the string replace method four
times. Some examples are

sv.replace('{', '{{')

sv.replace('[[', '{')

3. In python, build a dictionary dict that holds the keywords and replacement strings.

4. Run the string format method and pass this to the dictionary as follows.
sv.format(**dict)

5. Write the string to a new file.

193

Part XV: Packages

194

Lesson 127. pint

units and dimensions

To install, I used conda install -c conda-forge pint

An example

1 import p int
2 ur = pint . Uni tReg i s t ry ()
3 uf = ' /Users / dona lde l g e r / SpyderPro ject s /CourseBuilderR1/dbases / u n i t s f o r p i n t . txt '
4 ur . l o a d d e f i n i t i o n s (uf)
5

6 energy per vo lume = 32∗ur .MJ/ur .L
7 area = 5.4∗ ur .m∗∗2
8 area . i t o b a s e u n i t s ()
9 pr in t (' area : ' , area)

10 c o e f f i c i e n t d r a g = 0.32
11 dens i ty = 1.2∗ ur . kg/ur .m∗∗3
12 speed = 30 ∗ ur .m / ur . s
13 e n g i n e e f f i c i e n c y = 0 .4

195

Lesson 128. CoolProp

Fluid properties

To install, I used pip install CoolProp . The conda install did not work.

An example is:

1 from CoolProp . CoolProp import PropsSI
2

3 # Ask CoolProp water ' s heat capac i ty at 275 .15 K (2C)
4 # and common Earth p r e s su r e 101325 Pa
5 hea t capac i ty = PropsSI ('C ' , 'T ' , 275 . 15 , 'P ' ,101325 , 'INCOMP: : Water ')
6 #return 4182.587592215201
7 pr in t (hea t capac i ty)
8

9 #Ask CoolProp water ' s mass dens i ty and v i s c o s i t y with same cond i t i on s
10 dens i ty = PropsSI ('D ' , 'T ' , 275 . 15 , 'P ' ,101325 , 'INCOMP: : Water ')
11 #return 1003.076063639064
12 pr in t (dens i ty)
13

14 v i s c o s i t y = PropsSI ('V ' , 'T ' , 275 . 15 , 'P ' ,101325 , 'INCOMP: : Water ')
15 #return 0.0016507819947969723
16 pr in t (v i s c o s i t y)
17

18 kv i s c o s i t y = v i s c o s i t y / dens i ty
19 pr in t (k v i s c o s i t y)

To find saturation temperature or pressure, use a quality of 1.0 and one more property.

196

Lesson 129. Clipboard

Ref.

import clipboard

clipboard.copy("abc") # now the clipboard content will be string "abc"

text = clipboard.paste() # text will have the content of clipboard

197

https://pypi.python.org/pypi/clipboard/0.0.4

Lesson 130. Calendar

1 import ca l endar
2 yy = 2018 ; mm = 9
3 pr in t (ca l endar . month(yy , mm)) # d i sp l ay month
4 pr in t (ca l endar . ca l endar (2018)) # d i sp l ay year

Note: in terminal, the command cal displays a calendar.

198

Part XVI: How to Program

199

Lesson 131. Nomenclature

An attribute is the value of a property; a “property of a property.”

200

Lesson 132. Procedural; Functional ;OOP

Procedural versus object oriented.

A component provides services to client (users) through its interfaces.

Zelle John Zelle. Python Programming: An Introduction to Computer Science. 2nd Edition.
Franklin, Beedle & Associates Inc., 2010 asserts that the method of solving a hard problem
is to break the problem down into a set of cooperating classes. The reason is that this
approach reduces the complexity; allows the coder to focus on one thing at a time.

What does the class need to know?
What does the class need to be able to do?

The attributes of an object are the methods and parameters (instance variables).

201

Lesson 133. Testing

p. 217. Eric Matthes: Python Crash Course

Testing proves that your code works

A unit test verifies that one specific aspect of function’s behavior works.

A test case is collection of unit tests that span all the possibilities.

202

Lesson 134. Version Control and GIT

This book on git explains everything very well. My top learning resource. I downloaded
this book as a pdf file.

This article explains the main concepts of version control.

This tutorial was easy for me as a beginner.

p. 505, Eric Matthes: Python Crash Course
p. 471, Eric Matthes: Python Crash Course
p. 213, Cory Althoff: The Self Taught Programmer

Version control software give you the chance to store a copy of your program when your
program is in a working state.

A version of your program that is saved is called a commit.

134.1 What, Why, Nomenclature

Version control is the management of information stored on a computer–e.g., documents,
programs, web sites, and so on—in which changed files are identified and stored.

There are several common VCS, the two most common are

• SVN or Subversion which is described here
• GIT

Benefits of VC

1. Backup.
2. Synchronization.
3. Undo: both short-term and long term
4. Track Changes
5. Track Ownership
6. Try Something Out; both short term and long term (branch)

The nomenclature:

Basic Setup

203

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://betterexplained.com/articles/a-visual-guide-to-version-control/
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
https://en.wikipedia.org/wiki/Apache_Subversion

CHAPTER 134. VERSION CONTROL AND GIT 204

Repository (repo): The database storing the files. Server: The computer storing the repo.
Client: The computer connecting to the repo. Working Set/Working Copy: Your local
directory of files, where you make changes. Trunk/Main: The primary location for code in
the repo. Think of code as a family tree — the trunk is the main line.

Basic Actions

Add: Put a file into the repo for the first time, i.e. begin tracking it with Version Control.
Revision: What version a file is on (v1, v2, v3, etc.). Head: The latest revision in the repo.
Check out: Download a file from the repo. Check in: Upload a file to the repository (if it
has changed). The file gets a new revision number, and people can “check out” the latest
one. Checkin Message: A short message describing what was changed. Changelog/History:
A list of changes made to a file since it was created. Update/Sync: Synchronize your files
with the latest from the repository. This lets you grab the latest revisions of all files.
Revert: Throw away your local changes and reload the latest version from the repository.
Advanced Actions

Branch: Create a separate copy of a file/folder for private use (bug fixing, testing, etc).
Branch is both a verb (“branch the code”) and a noun (“Which branch is it in?”). Dif-
f/Change/Delta: Finding the differences between two files. Useful for seeing what changed
between revisions. Merge (or patch): Apply the changes from one file to another, to bring
it up-to-date. For example, you can merge features from one branch into another. (At Mi-
crosoft this was called Reverse Integrate and Forward Integrate) Conflict: When pending
changes to a file contradict each other (both changes cannot be applied). Resolve: Fixing
the changes that contradict each other and checking in the correct version. Locking: Tak-
ing control of a file so nobody else can edit it until you unlock it. Some version control
systems use this to avoid conflicts. Breaking the lock: Forcibly unlocking a file so you can
edit it. It may be needed if someone locks a file and goes on vacation (or “calls in sick”
the day Halo 3 comes out). Check out for edit: Checking out an “editable” version of a
file. Some VCSes have editable files by default, others require an explicit command. And
a typical scenario goes like this:

Alice adds a file (list.txt) to the repository. She checks it out, makes a change (puts “milk”
on the list), and checks it back in with a checkin message (“Added required item.”). The
next morning, Bob updates his local working set and sees the latest revision of list.txt,
which contains “milk”. He can browse the changelog or diff to see that Alice put “milk”
the day before.

134.2 How To

First, install git and create a GitHub account; see web for details. Once the software is
installed

CHAPTER 134. VERSION CONTROL AND GIT 205

Step 1: Make a root folder XY Z. Add one or more files.

Step 2: Create Repo. In terminal, navigate to root to the root folder and initialize a git
repo by typing
git init

Step 3: Stage. In terminal type, git add <filename> .

Step 4: ???Make a .gitignore file in folder XY Z. The contexts of the file are: __pycache__/

Lesson 135. Nomenclature for Paths and Files

pathname = mac name for the full path

206

Lesson 136. Commands

git config user.name : Show the Git username

git config --list : List all the configuration information

207

Part XVII: Engineering Stuff

208

Lesson 137. Fluid Properties

CoolProp is a C++ library that finds fluids properties and more.

PropsSI is a the python module for running CoolProp

1 # Import the PropsSI func t i on
2 In [1] : from CoolProp . CoolProp import PropsSI
3

4 # Saturat ion temperature o f Water at 1 atm in K
5 In [2] : PropsSI ('T ' , 'P ' ,101325 , 'Q ' , 0 , 'Water ')
6 Out [2] : 373.1242958476844

Names of properties
mass density: D, DMASS, Dmass
pressure P
mass vapor quality: Q
viscosity: V, viscosity

209

http://www.coolprop.org/general_information.html
http://www.coolprop.org/coolprop/HighLevelAPI.html

Lesson 138. Solving One Equation

When an equation cannot be solved by algebra, there are a variety of techniques ...

1 from sc ipy . opt imize import f s o l v e
2

3 de f my f (x) :
4 r e turn x∗∗3 − 27 .01
5

6 pr in t (f s o l v e (my f , 2))

210

Lesson 139. Types of Paths

There are three kinds of paths

1. Absolute: perhaps the best
2. Root Relative; relative to the root folder of site or project
3. Document Relative: avoid; hard to manage; can break

139.1 Latex: Root and Absolute Combination

see newcommand* versus newcommand

211

https://tex.stackexchange.com/questions/1050/whats-the-difference-between-newcommand-and-newcommand

Lesson 140. Solving a Set of Nonlinear Equations

The following example shows how to solve three equations.
Source: /Users/donaldelger/Documents/*A_C/BookCourses/FluidMechanics/tasks/_jupyter/15.py

1 from sc ipy . opt imize import f s o l v e
2

3

4 de f equat ions (p , ∗ args) :
5 ””” Find the f o r c e to hold a ho r i z on t a l nozz l e ”””
6 V1 , V2 , Fx = p # parameters to be s o l v e f o r
7 rho , A1 , A2 , p1 = args
8 mdot = rho ∗ A1 ∗ V1
9 eq1 = p1∗A1 + Fx − mdot ∗ (V2 − V1)

10 eq2 = p1 + rho ∗ V1∗∗2/2 − rho∗V2∗∗2/2
11 eq3 = A1∗V1 − A2∗V2
12 r e turn (eq1 , eq2 , eq3)
13

14

15 de f p r i n t v a r s (vars) :
16 ””” p r in t va lue s v a r i a b l e s c r ea ted with p int ;
17 vars = a s t r i n g with v a r i a b l e s names separated by commas
18 example vars = ('F, m, a c c e l e r a t i o n ')
19 ”””
20 vars = [var . s t r i p () f o r var in vars . s p l i t (' , ')]
21 f o r var in vars :
22 pr in t (' {} : {} ' . format (var , eva l (var)))
23

24

25 # Spec i f y the input parameters
26 rho , A1 , A2 , p1 = (
27 1000 , 50e−4, 10e−4, 2 .5∗100 e3)
28 inputs = rho , A1 , A2 , p1
29

30

31 # Spec i f y i n i t i a l guess va lue s o f V1 ,V2 , p2 , Fx , Fy
32 gue s s va l u e s = (1 , 10 , 1000 .)
33

34 # Solve f o r the unknown parameters
35 V1 , V2 , Fx = f s o l v e (equat ions , gue s s va lue s , a rgs=inputs)
36

37 # Print the r e s u l t s
38 pr in t (' \nInput Parameters ')
39 p r i n t v a r s (' rho , A1 , A2 , p1 ')
40 pr in t (' \nOutput Parameters ')
41 p r i n t v a r s ('V1 , V2 , Fx ')

Listing 140.1: Example: Solving Three Equations

To solve a set of nonlinear equation, use fsolve from scipy.optimize

212

CHAPTER 140. SOLVING A SET OF NONLINEAR EQUATIONS 213

Ref: search for fsolve

https://sites.google.com/a/aims-senegal.org/scipy/roots-finding-numerical-integrations-and-differential-equations

Lesson 141. Random Numbers

Random Module

Numpy Random

1 import random
2 import numpy as np
3

4 random . sample (s e t (' abcde ')
5

6 myset = np . around (np . random . uniform (0 , 2∗377 , 4) , dec imals=0)
7

8 ans = [8 , 69 , 43 , 38 , 23]
9 random . s h u f f l e (ans)

214

http://www.pythonforbeginners.com/random/how-to-use-the-random-module-in-python
https://docs.scipy.org/doc/numpy-1.13.0/reference/routines.random.html

Lesson 142. Permutations and Combinations

215

Bibliography

Zelle, John. Python Programming: An Introduction to Computer Science. 2nd Edition.
Franklin, Beedle & Associates Inc., 2010.

216

Lesson 143. Python Modules and Packages

Some references are:

realpython.com

stackoverflow.com

tutorialspoint

another tutorial ...

217

https://realpython.com/python-modules-packages/
https://stackoverflow.com/questions/15746675/how-to-write-a-python-module-package
https://www.tutorialspoint.com/python/python_modules.htm
https://python-packaging.readthedocs.io/en/latest/

Lesson 144. Exceptions

144.1 Raise an Exception

To raise an exception:
raise ValueError('A very specific bad thing happened.')

stackoverflow

218

https://stackoverflow.com/questions/2052390/manually-raising-throwing-an-exception-in-python

Part XVIII: Useful Packages

219

Lesson 145. Roman Numeral Converter

help(roman)

pypi site

import roman

fromRoman(s) convert Roman numeral to integer

toRoman(n) convert integer to Roman numeral

220

https://pypi.org/project/roman/

Part XIX: Python Connections

221

Lesson 146. Python files

To find source code for python functions: stack overflow

To find the location of python modules: stack overflow

222

https://stackoverflow.com/questions/8608587/finding-the-source-code-for-built-in-python-functions
https://stackoverflow.com/questions/269795/how-do-i-find-the-location-of-python-module-sources

Lesson 147. Package: Build Your Own

147.1 Rationale for Using a Package

Using a package makes organization of files easier. Organization saves times,

programiz.com says the following:

We don’t usually store all of our files in our computer in the same location. We
use a well-organized hierarchy of directories for easier access.

Similar files are kept in the same directory, for example, we may keep all the
songs in the ”music” directory. Analogous to this, Python has packages for
directories and modules for files.

As our application program grows larger in size with a lot of modules, we place
similar modules in one package and different modules in different packages.
This makes a project (program) easy to manage and conceptually clear.

Similar, as a directory can contain sub-directories and files, a Python package
can have sub-packages and modules.

A directory must contain a file named __init__.py in order for Python to
consider it as a package. This file can be left empty but we generally place the
initialization code for that package in this file.

147.2 Modular Programming

This quote is from ref :

Modular programming refers to the process of breaking a large, unwieldy pro-
gramming task into separate, smaller, more manageable subtasks or modules.
Individual modules can then be cobbled together like building blocks to create
a larger application.

There are several advantages to modularizing code in a large application:

Simplicity: Rather than focusing on the entire problem at hand, a module typ-
ically focuses on one relatively small portion of the problem. If you’re working

223

https://www.programiz.com/python-programming/package
https://realpython.com/python-modules-packages/

CHAPTER 147. PACKAGE: BUILD YOUR OWN 224

on a single module, you’ll have a smaller problem domain to wrap your head
around. This makes development easier and less error-prone.

Maintainability: Modules are typically designed so that they enforce logical
boundaries between different problem domains. If modules are written in a way
that minimizes interdependency, there is decreased likelihood that modifications
to a single module will have an impact on other parts of the program. (You
may even be able to make changes to a module without having any knowledge
of the application outside that module.) This makes it more viable for a team
of many programmers to work collaboratively on a large application.

Reusability: Functionality defined in a single module can be easily reused
(through an appropriately defined interface) by other parts of the application.
This eliminates the need to recreate duplicate code.

Scoping: Modules typically define a separate namespace, which helps avoid
collisions between identifiers in different areas of a program. (One of the tenets
in the Zen of Python is Namespaces are one honking great idea—let’s do more
of those!)

Functions, modules and packages are all constructs in Python that promote
code modularization.

147.3 Package

Any Python file is a module, its name being the file’s base name without the .py extension.
A package is a collection of Python modules: while a module is a single Python file, a
package is a directory of Python modules containing an additional __init__.py file, to
distinguish a package from a directory that just happens to contain a bunch of Python
scripts. Packages can be nested to any depth, provided that the corresponding directories
contain their own __init__.py file.

ref: module versus package

147.4 How to Set up a Package

Minimalist Tutorial

Hitchhikers Guide

uoftcoders

See ref .

https://stackoverflow.com/questions/7948494/whats-the-difference-between-a-python-module-and-a-python-package
https://python-packaging.readthedocs.io/en/latest/minimal.html
https://the-hitchhikers-guide-to-packaging.readthedocs.io/en/latest/quickstart.html
https://uoftcoders.github.io/studyGroup/lessons/python/packages/lesson/
https://realpython.com/python-modules-packages/

Lesson 148. Namespaces and scope

Here programiz.com explains a namespace.

A name, aka an identifier, is a name for an object.

A namespace is a set or collection of names.

225

https://www.programiz.com/python-programming/namespace

Lesson 149. Logging

ref

https://realpython.com/python-logging/

a. Get the Name of the module

1 l o gg e r= logg ing . getLogger (' HoshiLogger ')
2 l o gg ing . bas i cCon f i g (l e v e l=logg ing . INFO)
3 l o gg e r . i n f o (' you have reached l i n e 38 ')

b. Format the Log Message

Method 1: Use the basicConfig(**kwargs) method to configure the format of the logging:

1 l o gg ing . bas i cCon f i g (format= '%(asct ime) s − %(message) s '
2 , datefmt= '%d−%b−%y %H:%M:%S ')

This logging message:

INFO (02/03/19, 06:19, line 38, log1): You need to take a break from coding, dude.

was printed out which this code:

1 l o gg e r = logg ing . getLogger (name)
2 l o gg ing . bas i cCon f i g (format= '%(levelname) s (%(asct ime) s , l i n e %(l i n eno)d ,
3 %(module) s) : %(message) s ' , l e v e l=logg ing . INFO, datefmt= '%m/%d/%y , %I :%M')
4 l o gg e r . i n f o ('You need to take a break from coding , dude . ')

c. Set up a Module for Logging

Fig. 149.1 shows how to set up a module for logging.

226

https://www.loggly.com/ultimate-guide/python-logging-basics/

CHAPTER 149. LOGGING 227

Figure 149.1: Setting up a module for logging

d. Using Logging in Multiple Modules

ref

The recommended way to setup logging is to not define any handlers nor logging levels
into the modules, but define all the configuration—i.e., the handlers—in the main file ref .

https://stackoverflow.com/questions/40495083/using-python-logging-from-multiple-modules-with-writing-to-a-file-and-rotatingfi
https://stackoverflow.com/questions/40495083/using-python-logging-from-multiple-modules-with-writing-to-a-file-and-rotatingfi

Bibliography

Zelle, John. Python Programming: An Introduction to Computer Science. 2nd Edition.
Franklin, Beedle & Associates Inc., 2010.

228

Index

list comprehension, 24 module

definition, 15

229

	Contents
	I The Python Language
	1 Vocabulary
	2 Loading Modules
	2.1 Module Path Needs to be Specified

	3 Simple Math
	3.1 Mean

	4 The String
	4.1 Slice
	4.2 Capitalize or Lower Case
	4.3 Split a string
	4.4 String to List: Split at LineBreaks
	4.5 Search and Replace
	4.6 Count Occurrences
	4.7 String to Numbers
	4.8 Execute a Statement written as a String
	4.9 Remove Leading and Trailing Characters: Esp. Whitespace
	4.10 Check if String is Empty

	5 The String Format Method
	5.1 Format Specifier
	5.2 Older ...
	5.3 Numbers and Currency
	5.4 Values and Key=Value Information
	5.5 Use a Dictionary

	6 The List
	6.1 Remove or Pop item
	6.2 Add Item at Start or Before an Index
	6.3 Convert Between Tuples and Lists
	6.4 The List Comprehension
	6.5 List: integers to float

	7 The Dictionary
	7.1 Definition
	7.2 Creating a Dictionary
	7.3 Remove an Item
	7.4 Getting a list of the keys
	7.5 Dictionary
	7.6 Dictionary from Two Lists
	7.7 Reverse Lookup

	8 Copy and Deep Copy
	9 Loops
	9.1 Using a Dictionary
	9.2 List and Counter: Enumerate
	9.3 List Comprehension

	10 Logic, Conditionals, etc.
	11 Function
	11.1 *arg and **kwargs
	11.2 Passing a Dictionary to a Function

	12 Lambda (Anonymous) Function
	13 File Read and Write
	13.1 Read a File
	13.2 Read a File by Line
	13.3 Modes
	13.4 Stripping Whitespace
	13.5 Writing a File

	14 Read Comma Separated Variable (csv)
	15 Dump and Load Data to a File
	15.1 JSON
	15.2 Pickle (Binary)

	16 Work with Times and Dates
	16.1 Getting Started
	16.2 Delta Time
	a Speed: Minutes/Mile
	b Time Between Two Dates

	16.3 String to DateTime
	16.4 DateTime to String
	16.5 Directives for Strings
	16.6 Get the ISO 8601 Date as a String

	17 File Operations
	17.1 Get Folder Path
	17.2 Use Relative File Path
	17.3 Get Path + File
	17.4 Split Path into Extension plus Other
	17.5 Get File Name w/o Extension
	17.6 Open Finder to Folder
	17.7 Change Directory
	17.8 Get the Current Working Directory
	17.9 Check File Modification Date
	17.10 Open a File
	17.11 Check for File or Folder
	17.12 Write New File + Create All Folders in Path
	17.13 Make a Folder
	17.14 Copy a File, Folder, Directory Tree
	17.15 Open a File or Folder
	17.16 Rename a File or Folder
	17.17 Remove a Directory Tree
	17.18 List Files in a Directory
	17.19 List Files in Dir + SubDirs
	17.20 Building Absolute Path
	17.21 Absolute File Path
	17.22 Relative File Path
	17.23 Remove a File, Folder, or Directory

	18 Comparison Operators
	18.1 Sorting

	19 Exception Handling: Try and Except
	20 Logging
	20.1 Concepts
	20.2 Minimum Worked Example
	20.3 Setting the Logging Configuration
	20.4 Customizing the Logging Message
	20.5 Capturing Exceptions

	21 Useful Things
	21.1 Read a String (Speech)
	21.2 Compile a LaTeX file

	22 Arithmetic Operators

	II Standard Modules
	23 Math
	24 Vector Operations

	III Object Oriented Programming
	25 Big Idea
	26 Inheritance
	27 Setting and Getting Attributes

	IV Techniques for Python Programming
	28 Timing Code: What Runs Faster?
	29 Speaking/Talking
	30 Docstring
	31 Printing to the Default Printer
	32 CSV to List
	33 Print to File
	34 Regix Searches
	34.1 Resources
	34.2 MWE
	34.3 The search Function
	34.4 The findall Method
	34.5 Example
	34.6 Methods for regix objects
	34.7 Group Extraction
	34.8 Named Group (Placeholder)
	34.9 Greedy versus NonGreedy
	34.10 Tex Doc: Extract text between begin and end
	34.11 Summary Tables

	35 Binary Files
	36 Raising Exceptions
	37 Pretty Print
	38 Debugging
	39 Subprocess: Running Other Programs

	V Updates and Ecosystem Programs: Terminal, Anaconda, …
	40 Updates to Python
	41 Terminal
	41.1 Open a File (nondefault app)
	41.2 Run a Function

	42 Anaconda Updates
	43 Spyder
	43.1 Run from Spotlight

	44 Atom IDE
	45 Ipython
	45.1 Reset Variables
	45.2 Run a Script

	46 Add a module
	47 jupyter and jupyterlab
	47.1 Jupyter
	a Images

	47.2 Jupyter Lab

	VI Numpy
	48 Create ndarray
	48.1 Passing Lists
	48.2 Random Numbers

	49 Basic Math
	50 Element Wise Operations
	51 Solving Linear Equations
	52 Converting types of data
	53 Random Sample

	VII Symbolic Math: SymPy
	54 Misc
	54.1 Declaring Symbols
	54.2 Integration (Indefinite)
	54.3 Integration (Definite)
	54.4 Integration (Pretty Printing)

	VIII Plotting Data
	55 Getting Started
	56 About Plotting
	57 Style Ticks and Tick Labels
	58 Line Types, Colors, and Markers
	59 Saving a Plot
	60 LaTeX Labels

	IX SQLite
	61 Minimum Program
	62 Select a Record
	63 Insert a record
	64 Find the Maximum of a Column
	65 Delete a Row
	66 Get Column Names
	67 Get Number of Records and Last Record
	68 Get ID of Last Row Inserted
	69 Insert Date or Timestamp as Default
	70 Parameterized Query
	71 Row Dictionary
	72 Read Table to Pandas
	73 Read Table, Modify, Write to sqlite3
	74 Create New Table or DataBase
	75 Sqlite Shell
	75.1 Copying a Table from one dbase to another

	X Pandas
	76 Series
	76.1 Series to list

	77 Create a DataFrame
	77.1 From Records (rows)
	77.2 From numpy ndarray
	a Unlabeled rows and columns
	b Labeled Rows and Columns

	77.3 From dictionary
	77.4 From Excel File
	77.5 From sqlite3 DataBase

	78 Cells
	78.1 Given a cell value, Get the row

	79 Column Operations
	79.1 Get One or More Columns
	79.2 Column to List
	79.3 List Column Names
	79.4 Get the Index
	79.5 Sum a column
	79.6 Divide values in one column by another column
	79.7 Delete a Column
	79.8 Add a Column
	79.9 Sort a df by One Column
	79.10 Specify The Order in Which the Columns Appear

	80 Number of Rows/Columns in a df
	81 Work with Rows
	81.1 Iterate over Rows in a Dataframe
	81.2 Add a row to a DataFrame
	81.3 Select Certain Rows
	81.4 Select One Row; More that one row
	81.5 Select Row(s) based on Partial String Search
	81.6 Select Rows based on a List
	81.7 Reset the Index

	82 Convert a Series to a Dictionary
	83 Deep Copy
	84 Dropping Rows and Columns
	85 Join Dataframes
	86 DataFrame to SQL
	87 DataFrame to other formats
	87.1 DataFrame to Table
	a Working Example
	b Background

	87.2 DataFrame to csv

	XI Tkinter
	88 Big Picture: How to Use TkInter
	89 Label Widget
	90 Button
	90.1 Use Image

	91 Text Widget
	91.1 Get Text

	92 ScrolledText Widget
	93 Frame
	94 LabelFrame
	95 Toplevel
	96 Entry Widget
	96.1 Updating an Entry Box
	96.2 Scrolling Entry Widget

	97 Combobox
	98 simpledialog
	98.1 Example
	98.2 Parameters

	99 Checkbutton Widget
	99.1 Example

	100 Listbox Widget
	101 Canvas
	101.1 Line
	101.2 Image

	102 Interact with User: Dialog, Message, File
	102.1 Get a New File Name From User

	103 Open/Create a File or Folder
	103.1 Open/Create a Folder

	104 Notebook Widget (Tabbed)
	105 Message Box
	105.1 Warning Message Box
	105.2 Yes/No Messagebox
	105.3 Box Types

	106 The filedialog module
	106.1 Overview of the 3 module functions
	106.2 askdirectory

	107 Entry box, Get Data on Return
	108 Grid
	109 Text Box with Scrolling
	110 Passing Variables Using Lambda
	111 Event Binding
	111.1 Bind to Main Window

	112 Removing and Hiding Widgets
	113 Images
	114 Getting Widgets (Images) to Cycle
	115 Power User Methods
	115.1 Making Widgets Stretchable; Controlling widget size
	115.2 Finding/Changing the Attributes of Widget
	115.3 Displaying a Message for 5 seconds (or 2)

	116 Calendar
	117 Colors

	XII GUI CookBook
	118 Message that Self Destructs about 2 Seconds

	XIII Images in Python
	119 Summary
	120 About Images in Python
	121 Solving the tk Image Problem
	122 About PIL
	122.1 Filters
	122.2 Thumbnails (making images of given size)

	123 Example: Resizing (upwards)
	124 ImageMagick
	124.1 What Works
	124.2 Quality from a pdf

	125 MWE

	XIV LaTeX Scripting
	126 Overview

	XV Packages
	127 pint
	128 CoolProp
	129 Clipboard
	130 Calendar

	XVI How to Program
	131 Nomenclature
	132 Procedural; Functional ;OOP
	133 Testing
	134 Version Control and GIT
	134.1 What, Why, Nomenclature
	134.2 How To

	135 Nomenclature for Paths and Files
	136 Commands

	XVII Engineering Stuff
	137 Fluid Properties
	138 Solving One Equation
	139 Types of Paths
	139.1 Latex: Root and Absolute Combination

	140 Solving a Set of Nonlinear Equations
	141 Random Numbers
	142 Permutations and Combinations
	Bibliography
	143 Python Modules and Packages
	144 Exceptions
	144.1 Raise an Exception

	XVIII Useful Packages
	145 Roman Numeral Converter

	XIX Python Connections
	146 Python files
	147 Package: Build Your Own
	147.1 Rationale for Using a Package
	147.2 Modular Programming
	147.3 Package
	147.4 How to Set up a Package

	148 Namespaces and scope
	149 Logging
	a Get the Name of the module
	b Format the Log Message
	c Set up a Module for Logging
	d Using Logging in Multiple Modules

	Bibliography
	Index

